Cockatrice III 0.5a update

Here’s to US!

Well this is a ‘small’ update, but with a big change, the audio is for the most part working great now thanks to this fix from rakslice. Namely changing SDL to MSB:

desired.format = AUDIO_S16MSB;

And another MinGW tweak, and yeah it’s GREAT!

Even stuff like RealAudio work now! I’ll add some self hosted video later as it’d just get struck from anything public.

Also since the RealAudio player is timebombed for installing, I added some lazy offset to remove however many billions of ticks from the clock letting you jump in some random point in the past when it won’t care.

I guess the final if any justification for a bump would be rebuilding with GCC 8.1.0 on MinGW. I somehow butchered the slirp.h to make it too MinGW’ish so it won’t clean build on Linux or OS X, but I have re-butchered a private branch and it works.. I just need to merge and clean but I’m not in the mood at the moment.

I could be crazy but it “feels” faster.

At any rate, I found that System 7 is more agreeable to running Return to Zork, just use some toast image mounter from within MacOS, and it’ll run!

Also there is some ULONGLONG weirdness going on, so I had to backout Peter’s changes for larger disks. No doubt some standard type thing change in GCC 8.

You can download binaries/source from Sourceforge.

Download Cockatrice III
Download Cockatrice III

Thanks to shadyjesse Philpem’s FreeBee can now run the C compiler!

I call it Freebee with C!

Again super thanks to shadyjesse for finding and fixing the larger issues, and philpem for his great emulator, freebee!

So 1970’s

I have to say, having never played with an AT&T Unix PC, it’s kind neat with this windowing non X11 UI. Although even in emulation it’s incredibly slow. But such was the Unix microprocessor revolution of the era, it’s crazy to think the mighty SUN-2 is also on the same level of performance, although SUN would at least go the way of the 68020 before giving up on the 68k for SPARC.

Even though the 68000 lacked the ability to recover from bus faults, allowing a better path to UNIX with the 68010, OEM’s still brought their own MMU technology to flesh it out, leading to divergent systems. Not that it mattered all that much for AT&T as they started to establish themselves as the new defacto go to UNIX vendor they quickly abandoned the market leaving the Unix PC, and 3B2’s to die off. While so many like to think that the ‘Unix’ business is booming, it really only boomed once AT&T exited the market until Linux had started to gain enough mindshare post 1.0… Which also included 68000 support, although aimed for the the stronger 68030/68040’s.

Anyways I’m sure you didn’t come here for my ramblings about the 68000 instead you want an easy to run package to click and GO!

So here, you are, freebee based on build d3c9486 of freebee.

There are two executables, for normies, tourists, and people only wanting to witness the fun it doesn’t matter which one you use. For anyone wanting to install the 3B1 Unix, you’ll want “freebee-10sec-O2.exe”. Since the 3B1 uses a non standard format, if you want to use FAT 360kb disks from a PC emulator then you’ll need “freebee-9sec-O2.exe”. Isn’t compatibility great?

Re-visiting the SUN-2 emulator: Adding SLiRP!

While I’ve covered Brad Parker (lisper)’s ‘emulator-sun-2before, booting into SunOS isn’t anything that new.

However, with the latest updates, from github, adding in a prior botched attempt, and some messing around, and finally, I got it to ping at first, then it was a matter of where to place the ‘slirp tick’. I first though putting it on the interface poll was a good spot, but for some reason the machine causes a deadlock/stall on boot before the PROM can even initialize. I’m not sure why. Searching further I found a good timer portion and injected the code. And sure enough I was greeted with the login banner:

I’ve been able to paste in about 100kb of a uuencoded tar file, and it didn’t lock the VM, and I was able to uudecode it, and actually build the source (Infotaskforce ’87 if anyone cares). So I’m at the point I think it’s stable enough to shove into the world, although I guess until I revisit it again.

You can download it on sourceforge:

Philip Pemberton’s 3B1 emulator moved

It’s been a while since I played with Philip Pemberton’s excellent emulator, however the source code has been moved to github

As a nice bonus it’s been updated to build against the newer source drops of Karl Stenerud’s Musashi.

The Makefile is so nice it chains in c files from sub-directories to build, which unfortunately it doesn’t work so well with the latest Musashi. Like a bull charging into the China shop I just smashed together a build script, and got a working exe:

And it’s so nice to see it actually boot up.

Things like the C compiler still break, apparently the 6100 had an actual physical memory buffer for IPC? It’s all so confusing.

Not that mine is all that great but my crap fork is here:

Thanks to LGR I just found out about SimCity for palm pilots was a thing!

I only owned one palm, the Palm VII which was the first taste of 2007 from back in ’99 or so.

Palm stumbled however delivering such a low powered low memory, low storage and amazingly out dated 68000 based machine, but what set it apart from all the rest was the integrated cellular modem. Raise the little antenna and you could send and receive emails, “browse” websites all from the palm of your hand. It really was fantastic, until I got the cellular bill. AT&T saw this as an ultra premium device and service, not something for normal people and priced it as an ultra niche thing. And it’s a shame as the future was right there, in the plam of your hand so to speak.


I looked on google play and picked up PHEM, and downloaded some ROMs. I started with the VII ROM out of nostalgia, but sadly the VII ROM I found is version 3.5

And naturally SimCity won’t work.

I kind of remember this being another issue with the VII, that it was basically a dead end evelotionary branch, not a vision or path forward. It was a fluke.

Version 4 devices were back to needing rs232 docks.

For me the future wouldn’t come back until 2002 with the first Windows CE phones, that features an ARM processor, expandability and a more robust OS.

I always thought there was no good full featured games back then, it’s amazing playing SimCity, even under emulation. Although if anyone wants to try, modern android phones run it far too quickly.


Since I was playing with the 68000 based GCC ’87 I know it was going to be more geared to SUN workstations, certainly of the early 80’s vintage as they would be the most ‘affordable/cheap/donated’ to FSF (Or so I’d imagine).

Naturally the go to emulator is TME, however this time while searching around for the install scripts and stuff I found lisper‘s ( emulator-sun-2, a greatly cut down and SUN-2 focused emulator that emphasizes ease of use.

Wait, what? SUN-2, and ease of use? Why yes, not only that, as it uses SDL 1.2 it also means it’s much easier to compile. After an hour of messing around with it, I had it running on Windows. After a few minutes I had it running on my ARM based Acer NovaGO.

At it’s core is the m68k 68010 emulation from Karl Stenerud‘s Musashi core which is a great choice for the SUN-2 as it’s a 68010 based machine. Some fun notes from include:

  • CPU is a Motorola 68010 running at 10MHz
  • Maximum physical memory is 4 Megabytes
  • Maximum virtual memory is 16 Megabytes
  • All I/O is via a Multibus (an Intel design)
  • Main disk is a SMD, the largest size is 380Mbyte
  • Has a SCSI adapter, but the disk is slow and small (42Mbyte)
  • Sun was just finishing NFS
  • alludes to future AT&T UNIX System VI and VII
  • Display supported dual heads and a resolution of 1152×900
  • List price as tested: $44,900
  • Sun was still private, had 400 employees and sold 1500 units

You can read about the debut of the SUN-2 in the UNIX/WORLD Magazine, VOlume 1, Number 5 dated October 1984 in It starts on page 86.

I started to integrate sigurbjornl’s patches for networking but I think I need to work through SunOS 2.0’s weird VAX 4.2BSD arp issues (anyone have the source code to SunOS 2.0?!). I’ll probably update it with UDP or some fixed ARP thing to remove that or just let the SUN-2 talk to a VAX with 4.2BSD so they can be weird, together.

I’m also pretty sure my old Cockatrice III sort of debugged SLiRP thing broke the packed structs to let it work properly when compiled with Microsoft C, so I’ll have to break down and either try to fix that, or update and borrow the vastly updated SLiRP from SIMH.

For Windows users who want to play along the bundle is on the terribly named page “Ancient UNIX/BSD emulation on Windows” as

GCC from ’87 on the 68000

Years ago I found the ‘first’ released version of GCC, and had built it for the VAX. And things were… fun.

While digging around on bitsavers for new and interesting things, I saw some newer stuff from MIT, and stumbled into the GNU directory and rediscovered the early GNU software depot.

And I re-built the early GCC to target the 68000 which I’d imagine primarily was for the SUN target.

simple program

Using a simple program I can run it through the pre-processor, and the compiler to get the following assembly:

assembly from ’87 GCC

Then it’s a matter of running it through the cross assembler, uuencoding it, and sending it to the target.

I used the cross assembler from the AtariST cross ‘project’, to get an object file. I fired up MachTen, pasted my object file to the VM, and uudecoded the object.

And yeah, much to my surprise the object file linked fine, and I got my native EXE.

It’s not much of a cross toolkit, and honestly it’s kind of useless… but I thought it was maybe worth a bare paragraph to show the other available target available for the 1987 release of GCC.

Also on the MIT archive is TRIX, the MIT Unix work alike that almost became the GNU Kernel, until Mach stole their hearts, and basically lead them on a wild goosechase.

I haven’t bothered uploading binaries or patches or anything yet, I don’t know if people are interesting in such a fringe thing……

Running TME on Linux Subsystem for Windows (v1?)

I know in all the trade news everyone is excited that the newest Linux Subsystem for Windows will provide a native kernel. I would imagine it’s going to run along the lines of containers which means using the Hyper-V stuff. So good bye VMWare?

Anyways I want to run SunOS 2.0 which means no graphics are needed, but what I do need is a pty. I’m a n00b so I don’t know how to generate them myself, but I did see that I can piggyback on a ssh session. So first you need to enable & run sshd, which instructions are here, Although with Ubuntu 18.02 LTS there is further steps listed here. If everything is okay, you can SSH into your Windows machine, getting the Linux subsystem.

Some notes on building:

First let’s get the emulator and patches for SunOS 2

wget tar -zxvf tme-0.8.tar.gz wget cd tme-0.8 patch -p1 < ../diffs-20111125

Using GCC 5 or 7 (probably everything post version 3, the -Werror will cause building TME to error out.

I just removed the following block from configure

if test "x$enable_warnings" = "xyes" -a "x$GCC" = "xyes"; then CFLAGS="${CFLAGS-} -Wundef -Wall -Werror" CXXFLAGS="${CXXFLAGS-} -W" fi

Now you can run configure & make. I follow the general wisdom, which involves disabling shared libraries. Otherwise you can play with the dynamic linker. Yuck.

sh configure --disable-shared make

It doesn't like to build in parallel, so be prepared to wait.

And yes, building fb-xlat-auto.c & fb.c does take a long while. Also make sure to have bison & flex installed.

Using Debian 9/GCC 6.3.0 I do get a bomb compiling module.c

module.c: In function 'tme_module_init': module.c:93:3: error: 'lt_preloaded_symbols' undeclared (first use in this function) LTDL_SET_PRELOADED_SYMBOLS();

In this case I just copy the definition from libltdl/ltdl.h and put it into module.c It'll complain about it being a duplicate, but it'll compile. I don't understand that either.

Now we need to set the variable LTDL_LIBRARY_PATH to pickup the config for each hardware component.

export LTDL_LIBRARY_PATH=$HOME/tme-0.8

Ok and now let's get ready to install SunOS 2.0

$ mkdir sunos2 cd cd sunos2/ wget tar -zxvf sunos_2.0_sun2.tar.gz mv sunos-2.0-sun2/tape1 . wget perl $HOME/tme-0.8/machine/sun/tme-sun-idprom 2/120 8:0:20:02:02:02 > my-sun2-idprom.bin

Now we can configure the emulator. One thing to take note of is what pts device has been created once you SSH'd into Windows.

$ ls -l /dev/pts/ total 0 crw--w---- 1 jsteve tty 136, 0 May 13 15:08 0 c--------- 1 root root 5, 2 May 13 10:47 ptmx

So in this case it's /dev/pts/0 for me, as I'm the first (and only) thing connected.

Now you need to edit the config. This is the one that I'm using:

mainbus0: tme/machine/sun2 multibus my-sun2-idprom.bin cpu0 at mainbus0: tme/ic/m68010 obio0 at mainbus0 obio: tme/generic/bus size 8MB obmem0 at mainbus0 obmem: tme/generic/bus size 16MB ram0 at obmem0 addr 0x0: tme/host/posix/memory ram 4MB rom0 at obmem0 addr 0xef0000: tme/host/posix/memory rom sun2-multi-rev-R.bin rom0 at obmem0 addr 0xef8000 clock0 at obio0 addr 0x2800: tme/machine/sun2/clock tod0 at obio0 addr 0x3800: tme/machine/sun2/tod zs0 at obio0 addr 0x2000 ipl 6: tme/machine/sun2/zs mbio0 at mainbus0 mbio: tme/generic/bus size 8MB mbmem0: tme/generic/bus size 8MB mainbus0 mbmem at mbmem0 addr 0x00000 sc0 at mbmem0 addr 0x80000 ipl 2: tme/bus/multibus/sun-sc scsibus0 at sc0: tme/scsi/bus console0 at zs0 channel A: tme/host/posix/serial device /dev/pts/0 break-carats sd0 at scsibus0: tme/scsi/disk id 0 type acb4000 disk0 at sd0: tme/host/posix/disk file my-sun2-disk.img st0 at scsibus0: tme/scsi/tape id 4 type emulex-mt02 tape0 at st0: tme/host/posix/tape command tape0 load tape1/01 tape1/02 tape1/03 tape1/04 tape1/05 tape1/06 tape1/07 tape1/08 tape1/09 tape1/10 command mainbus0 power up

Now we are almost ready! Create a 1GB disk image with dd:

dd if=/dev/zero of=my-sun2-disk.img bs=1M count=1024

Now we are ready to go. From the ssh connection just type in 'cat > /dev/pts/0' and now everything we type in will be on the console. Now from a normal bash session type in '$HOME/tme-0.8/tmesh/tmesh SUN2-MULTIBUS' If everything goes well the bootpromp text will pop up on your SSH session.

SUN-2/120 on Windows!

And if everything has gone right, we are now at the firmware prompt, ready to install SunOS 2.0!

Instructions from gives a pretty good walk through of configuring a 1GB disk, and the installation. Although as a hint use the -as flags when booting SunOS for the install. And after booting the miniroot, follow the instructions on heeltoe regarding doing the 1st tape of the install.

>b st() Boot: st(0,0,0) Boot: sd(0,0,1)vmunix -as Size: 368640+57344+66652 bytes Sun UNIX 4.2 Release 2.0 (GENERIC) #1: Mon May 20 15:32:06 PDT 1985 Copyright (c) 1985 by Sun Microsystems, Inc. mem = 4096K (0x400000) avail mem = 3575808 Ethernet address = 8:0:20:2:2:2 sc0 at mbmem 80000 pri 2 sd0 at sc0 slave 0 sd0: sd1 at sc0 slave 1 st0 at sc0 slave 32 zs0 at virtual eec800 pri 3 pi0 at virtual ee2000 root device? sd0* using 100 buffers containing 366592 bytes of main memory #

After that it's a matter of working out which tar file goes where. Is there even an install process? I just untarred the rest of the tapes in the /usr directory.

For the impatient, tme-0.8-linux-x86_64_bin.tar.gz and
tme-0.8-SunOS-2.0.tar.gz. As always read the 404 page.

I think I’m chasing a struct packing issue

i386 breaking on the AASTINKY texture

On the i386 a texture info lump loads up just fine. However on a big endian G5…

OS X 10.2.8 on the G5 on the same AASTINKY

…It clearly has problems. Although notice that the positions and sizes are the same, as they ought to be.

Notice how originx is 24, which should be the width. This code was running with GCC 1.30/1.40 hammered x68000 GCC. Although I have been unable to get the much vaulted gcc-1.30.atari.tar.bz2 to do anything useful, well until tonight, when I found this file: GNU_HEAD.ARC.

That’s right, it’s the gcc-1.23 release headers for GCC on the Atari ST. Now I know other places people have been saying I should use MINT or some GCC8 port. And I wanted something to run on bare TOS, and I cross compiled the simple Infocom interpreter but it just crashes out after a few commands. It’s hardly stable.

3 bombs and an exit under GCC 8.0

Which is just a damned shame, as it was easier to just download someone else’s work.

Anyways, I now can build the old gcc-1.30 libc however… the linker that I’m using that works for GCC 2 links away and it looks like a working program but it doesn’t do anything. I have a feeling the linker drifted in those years between GCC-1.30 and GCC-2.something when it was adapted. Certainly by the time of 2.5.8. So yet more endian ghosts to chase down if I try to adapt that linker.