An actual look at Microsoft OS/2 2.0

Years ago, feeling nostalgic, I had written a quick throw away thing about the old article from PC Magazine, 29th of May, 1990, detailing the coming future of Operating Systems, Microsoft OS/2 2.0. 14 year old me was blown away!

614KB Free! And Flight Simulator 4 in a window

This release marks the last time that Microsoft would release an OS/2 beta to developers, instead with the runaway success of Windows 3.0, Microsoft would remove resources from the constrained OS/2, and refocus both on Windows 3.1, and Windows NT.

Thanks to one of my Patrons – Brian Ledbetter, the much-sought Microsoft OS/2 2.0 Pre-Release 2 is now available! So obviously the first thing to do was to re-create the original magical screenshot.

One thing of note is that thanks to some of the metadata left at the end of the disks we know when this disk set was made:

$FTIME = Wed Jun 22 09:00:56 1988
$DTIME = Tue Aug 15 07:48:10 1989
$PCTIME = Thu Apr 27 11:51:54 1989
$FREV = Wed May 31 09:17:24 1989
$DUP TIME = Fri Jul 13 16:02:27 1990

Given that the PC Magazine issue was published in May of 1990, it showcased version 6.43, shipped to devs early January of 1990, and timestamped 20/12/1989. I would speculate that it’s the Pre-Release 1.

The OS/2 Software Development Kit

This Pre-Release 2 set was made in July with the files being timestamped 01/06/1990, so physical releases every 6 months? I guess that makes sense when you look at how many disks have to be duplicated, boxed up and sent out. It’s one big win for digital downloads, or how Windows 10/11 can background download updates, or even entire OS updates (that are more like new installs) today. Mailing big heavy boxes must have sucked. And dealing with lost/damaged disks. Also as you can see on the box, it only contains 5 1/4″ disks, they didn’t even ship dual media.

Maybe the large box is a reaction to the first Pre-Release’s 16 disks & a few photocopied sheets mere 10oz. Maybe people were displeased that they didn’t get much printed ‘bang’ for their $2,600 – the price of the 2.0 SDK.

The disks were dumped with Kyroflux, and on several of the disks there is extra trailing information on the disks revealing data from when they were manufactured:

$TRACEBACK (tm) Ver 1.04
$OPER = operator
$STATION = 1
$STN LIST = 1 3 5 7 11 13 15 17 19
$WORKORDER = -1
$SYSTEM = 7
$PRODUCT = z:/product/110098449.p
$PTIME = ???
$FORMAT = /format/fmt12.f
$FTIME = Wed Jun 22 09:00:56 1988
$DRIVE = /drive/3xhd96sdsmt.d
$DTIME = Tue Aug 15 07:48:10 1989
$MODULE = /config/3xhdSDSmt.s
$MTIME = ???
$WINDOW MARGIN = 87.5%
$RETRY SETTINGS = 3,2,25
$FUNCTION = write/verify
$PRECOMP = /precomp/3xhdSDS.t
$PCTIME = Thu Apr 27 11:51:54 1989
$FREV = Wed May 31 09:17:24 1989
$DRIVESN =
$LOADERSN = 525-100-70
$DFCSN = 3402 SDSFC
$USTRING =
$TSTRING = TraceBack (tm)   (c) 1989 Trace Products All Rights Reserved.
$DUP TIME = Fri Jul 13 16:02:27 1990
$DISK NUMBER =  22 of 45
$SN = NONE

That’s right, this disk (Install 1) was manufactured on Friday the 13th!

Running strings against the DOSKRNL reveals this string:

MS DOS Version 4.00 (C)Copyright 1988 Microsoft CorpLicensed Material - Property of Microsoft

Not only is it a new OS/2, but a new MS-DOS! Neat!

 APPEND.EXE
 ASSIGN.COM
 COMMAND.COM
 EDLIN.COM
 GRAFTABL.COM
 JOIN.EXE
 SETCOM40.EXE
 SUBST.EXE

This is *NOT* a comprehensive version of MS-DOS 4.0. Then again anything to do with disks, you should be using OS/2. It’s more so commands needed for working inside the virtual MS-DOS environment. And yes, it doesn’t include any basic.

There is built in support for EMS, and there is an XMS driver, but it’s not activated by default. I didn’t bother trying Windows 3.0, but I did install Word for Windows, which has a runtime version of Windows 2.11

Windows 2.11 Runtime on OS/2

Trying to run the windows executable directly gives a weird error:

SYS0195: The operating system cannot run %1.

I went ahead and installed WLO, or the Windows Libraries for OS/2, and some things do run, and many more hang the system. I think its an issue in PM, and CAD (Control+Alt+Delete) does reboot the system.

WLO on Microsoft OS/2

It’s a shame Microsoft couldn’t get Windows as the UI to OS/2, it certainly would have had a far more viable lifetime. I’ve ranted about it before but IBM’s insistance of supporting the 286, releasing a $6,000 286 in 1987 basically ensured early OS/2 was facing the wrong direction technically, and by ignoring the existing Windows stack, it just delayed OS/2 being useful from the get-go.

Anyways…..

And running strings against the OS2KRNL reveals:

Copyright 1986 IBM Corp.
Internal revision 6.78, 90/05/09

And to further muddle the waters:

@(#)ldrste.c    13.125 90/05/09
@(#)ldrfixup.c  13.43 90/05/09
@(#)ldrsubr.c   13.116 90/05/09
@(#)pgset.c     13.64 90/05/01
@(#)selmgrc.c 13.76 90/05/01
@(#)vmalias.c   13.48  90/05/01
@(#)vmalloc.c   13.71 90/05/01
@(#)vmapi.c          13.50 90/05/07
@(#)vmfree.c    13.89 90/05/01
@(#)vminfo.c         13.33 90/05/01
@(#)vminit.c    13.60 90/05/01
@(#)vmshared.c 13.41 90/05/01
@(#)selkh.c 13.14 90/05/01
@(#)tklibi.c 13.42 90/05/09
@(#)inidin2.asm 1.86 90/04/27
@(#)selinit.asm 13.51 90/05/09
@(#)ldrinita.asm        13.47 90/05/09
@(#)selwrk.asm 13.51 90/05/07
@(#)vdmaa.asm         13.54 90/04/27
@(#)trap.asm    1.82 90/05/04
@(#)trap286.asm 13.43 90/05/04

If you were ever wondering what the names of the source was, here is the .c & assembly:

dbgee.c
dbger.c
dbgwp.c
dem.c
dyndto.c
dyndtr.c
em86.c
except.c
ldrgc.c
ldrinit.c
ldrmte.c
pgage.c
pgalloc.c
pgfault.c
pgframe.c
pginit.c
pgmap.c
selini.c
semalloc.c
seminout.c
semtools.c
semverif.c
semwrkr.c
smalloc.c
smsft.c
tkinit.c
tksleep.c
tkthrd.c
vdmapi.c
vdmctrl.c
vdmm.c
vdmmasrt.c
vdmmcrt.c
vdmmem.c
vdmmheap.c
vdmmisc.c
vdmpage.c
vdmprop.c
vdmtime.c
vmbmp32.c
vmdevhlp.c
vmkrh.c
vmksh.c
vmlocate.c
vmlock.c
vmob.c
----
demfile2.asm
demioc2.asm
demnls.asm
dhrouter.asm
dynci.asm
dyndtra.asm
em86io.asm
em86misc.asm
fsinfo.asm
gshare.asm
int.asm
kmodea.asm
ldrrsrc.asm
ldrrun.asm
monhigh.asm
npx.asm
pageio.asm
pga.asm
selmap.asm
selmgra.asm
selseg.asm
sftio.asm
sicg.asm
sig.asm
tkexit1.asm
tkmisc.asm
tkwksem.asm
vdhserv.asm
vmmisc.asm
vmname.asm

Neat!

I would imagine a lot of the v86 mode virtual device drivers came from Windows/386. But it looks like these were all written in C? Running strings against all the virtual device drivers reveals all C? I got zero hits for .asm

emm.c
emm1.c
emm2.c
emmctrl.c
vbios.c
vcmos.c
vcmosio.c
vdma.c
vdsk.c
vdskint.c
vdskio.c
vkbd.c
vkbdint.c
vkbdio.c
vkbdreq.c
vmbound.c
vmdevrq.c
vmevent.c
vmhook.c
vminit.c
vmlpen.c
vmmisc.c
vmpos.c
vmptr.c
vmrate.c
vmreset.c
vmstate.c
vmuser.c
vpic.c
vtd.c
vtdint.c
vtdio.c
vtdreq.c
xmm.c
xmmctrl.c

It’s not like any of this is ever going to see the light of day, but it’s all interesting, at least to me.

Let’s install!

Installing Microsoft OS/2 2.0 Beta on VMware

I’ll have to update where I had found this, if it was the electronic documentation, or the one time I got to go through the printed documentation that the Microsoft version was adding True Type Fonts. Sadly I can’t find any evidence in the binaries.

OS/2 System Monospace Fonts
OS/2 Courier Fonts, (c) Copyright 1988 Microsoft Corp., Portions Copyright 1985 Bitstream, Inc.
OS/2 Helvetica Fonts, (c) Copyright 1988 Microsoft Corp., Portions Copyright 1985 Bitstream, Inc.
OS/2 Times Roman Fonts, (c) Copyright 1988 Microsoft Corp., Portions Copyright 1985 Bitstream, Inc.

  "PM_Fonts"           "SYSMONO"            "C:\OS2\DLL\SYSMONO.FON"
  "PM_Fonts"           "COURIER"            "C:\OS2\DLL\COURIER.FON"
  "PM_Fonts"           "HELV"               "C:\OS2\DLL\HELV.FON"
  "PM_Fonts"           "TIMES"              "C:\OS2\DLL\TIMES.FON"

Well, that’s sad.

No VIO for you!
No VIO access from 32bit

As I had touched on earlier, These early OS/2’s have no user accessible way to call the legacy 16bit OS/2 API’s. At best you have simple text mode stuff, anything graphical, you need to port to Presentation Manager.

I was able to take the GCC port I did to OS/2 and re-link the objects ,and I was correct, it ran without any changes! I had compiled it using the December 1991 Windows NT Pre-Release’s CL386 compiler. So far so good.

I tried to use the 1991 compiler to build Sarien, and it instantly crashes. I also tried building everything but the Presentation Manager with GCC, and again instant crash. I was able to use the OS/2 2.1 v1.2 DDK, and get a working EXE, even using /Ox (maximum optimisations!). Clearly there is something fundamentally missing or I’m missing something fundamental.

While there is a HPFS installable filesystem, there is no CD-ROM IFS. Running strings against HPFS reveals this much when looking for C. There was no hits for .asm

execioh.c: calling strat2 with PIOH=%p
execioh.c: returned from strat2 with PIOH=%p
qdiskop.c: entered, ioh=%p lsnStrt=%lu csec=%u pbData=%p
unlckio.c:entered, pioh=%p
unlckio.c:retheaping lock handle %p

Even more strange, is that HPFS for OS/2 was still 16bit. I had hoped that even though this is a beta, that there would be a 32bit version of the filesystem. Sadly that kind of feature was reserved for Lan Server installs.

HPFS.IFS: MS-DOS executable, NE for OS/2 1.x (DLL or font)

Could you imagine shipping a 32bit filesystem to home/low/middle tier users today? Speaking of, let’s check the rest of the C:\OS2 binaries:

ANSI.EXE:     MS-DOS executable, NE for OS/2 1.x (EXE)
ATTRIB.EXE:   MS-DOS executable, NE for OS/2 1.x (EXE)
BACKUP.EXE:   MS-DOS executable, NE for OS/2 1.x (EXE)
CACHE.EXE:    MS-DOS executable, NE for OS/2 1.x (EXE)
CMD.EXE:      MS-DOS executable, NE for OS/2 1.x (EXE)
CREATEDD.EXE: MS-DOS executable, NE for OS/2 1.x (EXE)
E.EXE:        MS-DOS executable, NE for OS/2 1.x (EXE)
EAUTIL.EXE:   MS-DOS executable, NE for OS/2 1.x (EXE)
FDISKPM.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
FIND.EXE:     MS-DOS executable, NE for OS/2 1.x (EXE)
HELPMSG.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
MAKEINI.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
MOVESPL.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
PATCH.EXE:    MS-DOS executable, NE for OS/2 1.x (EXE)
PICICHG.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
PICPRINT.EXE: MS-DOS executable, NE for OS/2 1.x (EXE)
PICSHOW.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
PMCPL.EXE:    MS-DOS executable, LE executable
PMEXEC.EXE:   MS-DOS executable, LE executable
PMFILE.EXE:   MS-DOS executable, LE executable
PMSHELL.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
PMSPOOL.EXE:  MS-DOS executable, LE executable
PSTAT.EXE:    MS-DOS executable, NE for OS/2 1.x (EXE)
REPLACE.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
RESTORE.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
SORT.EXE:     MS-DOS executable, NE for OS/2 1.x (EXE)
SPOOL.EXE:    MS-DOS executable, NE for OS/2 1.x (EXE)
SYSLOG.EXE:   MS-DOS executable, NE for OS/2 1.x (EXE)
TRACE.EXE:    MS-DOS executable, LE executable
TRACEFMT.EXE: MS-DOS executable, NE for OS/2 1.x (EXE)
UNPACK.EXE:   MS-DOS executable, NE for OS/2 1.x (EXE)
VIEW.EXE:     MS-DOS executable, NE for OS/2 1.x (EXE)
VIEWDOC.EXE:  MS-DOS executable, NE for OS/2 1.x (EXE)
XCOPY.EXE:    MS-DOS executable, NE for OS/2 1.x (EXE)

The vast majority of them are 16bit. The 32bit stuff is in the defunct LE format. This is why nothing from the GA (General Availability) versions will ever run on these betas, and why I was trying to make stuff available as linkable objects. And yes, my Sarien port is LE:

SARIEN.EXE: MS-DOS executable, LE executable

There is a LAN client disk set, so I guess you were expected to just go across the LAN.

The SDK & Toolkit for this beta have been around for a substantial time. The big difference is that we now have binary compatibility so we can run ALL the examples, namely the Open Dialog demo.

Open Dialog

We take this kind of thing for granted today, common controls, but back in the early 1990’s this was a surprisingly lacking from many UI’s of the time. Since these beta DLL’s use a different format, this won’t run on the later betas, let alone the release. So, this is for those looking for secret hidden stuff.

Is it usable though? Well if your workload is OS/2 applications, ABSOLUTELY. If you want to do cute stuff on MS-DOS.. It’s all YMMV, but traditional apps seem to behave pretty well.

It’s a shame for some reason that overall, these early OS/2 2.0 betas were not all that wide spread, as they are just so interesting! And compared to the GA version of OS/2 2.0 these ancient versions with the 1.x Presentation Manager do feel a lot faster. Sometimes I miss the Workplace Shell, Other times I miss the old terrible Desktop Manager with its incredible simplification.

For those just wanting to mess with the Operating System, it really is a developer’s release so it’s pretty spartan. Sadly there is no XGA drivers in these early betas, there is 8514/a support but I had no luck with it. I suspect it’s probably something I had done wrong. I should also point out, if you are using 86Box, and are using a 486DX/Pentium be sure to enable the softfloat option.

FPU passthru gives major issues with MS-DOS under OS/2

Maybe a math co-processor really was a hidden requirement of these early OS/2 betas? So, perhaps more confirmation that buying an 80387 was NOT a waste of money. I should also add that when trying to compile PHOON, I did have to use /FPi87 or inline 8087 instructions, otherwise instant crash. I had thought it was a mixed FPU mode crashing the linking of GCC+MSC code but I tried a few combinations, none of them worked.

Once more again, I want to thank my Patrons for making this possible, and a big thanks to Brian Ledbetter for being so kind to preserve this incredibly rare, and historically significant software kit.

I’ve made my VMware image available, and 86box.

Everyone has a theory on why OS/2 failed, and here is mine: The PS/2 Model 60

Don’t get me wrong, it’s a very 1980’s awesome machine. Aesthetically. But practically? No way, it’s a legit white elephant. And it killed OS/2 before it even became a thing. I know what about the JDA, and IBM interference? What about the poor choice of the 80286 processor? What about DOS Extenders? YES it’s all there, Half an Operating System, for Half a computer, the real reason OS/2 failed, and it’s wrapped up in a 20 x 8 x 18 inches package weighing in at 40 pounds.

Behold the IBM PS/2 model 60.

The PS/2 model 60 from the OS/2 1.0 brochure

The base model PS/2 60 with the 44Mb hard disk was priced at an eye watering $5,925 in 1987. And to be clear that is with only has ONE megabyte of RAM which is nowhere near enough to even boot OS/2. Realistically, you would need the additional memory card, and another 4MB of RAM, raising the price far higher, as stated in the requirements for the sales demonstration of OS/2.

The realistic OS/2 requirements, 5MB of RAM!

The 77Mb disk system would set you back $6,295, again not counting the needed memory upgrades.

It’s BIG, loud, expensive, and more importantly obsolete on day one.

Going back, to the original success of the IBM PC and it’s open architecture lead to the one big issue, which is that it was trivial for people to clone, as they published everything you’d want to know in their technical reference manuals. The one thing that was copywrite was the BIOS. However as I’m sure everyone heard the story of how Columbia Data Products released the MPC 1600, which set the gold standard on reverse engineering, but opened the floodgates to bigger players like Compaq, and ushered in the clone revolution.

IBM was obviously not happy with this. IBM always looked to hardware for money, and IBM build quality, and of course that lead us to the PS/2. There is no way they could have developed this in the space of a year, which again if it took 2-3 years to bring them to market, it would explain so many of the missteps of the Model 30 which both had an ISA bus, and had either an 8086 or 80286 processor. This may have been okay for 1985, but they were far too old & slow for 1987. Many people have cited that part of the PS/2 revolution was the new bus on the model 60/80 Microchannel which unlike ISA had to be licensed from IBM, but of course it didn’t catch on, instead it gave confidence to the industry to not only set out on their own 386 machines, but then their own 32bit bus EISA. Yet another reason the 8086/80286 machines should never had existed.

$5,795 MSRP for the IBM AT – InfoWorld 3 Dec 1984

Looking back to December of 1984 we can see the MSRP for the 6Mhz IBM AT was $5,795, the AT model 099 included a whopping 20MB hard disk, a single high density 1.2MB 5 1/4″ floppy drive, and 512kb of RAM. Now jump forward a few years, and every clone manufacturer has benefited from economies of scale as the commodity parts increase of demand and sourcing has only led to lower prices. Except for IBM. While the Model 60 does have twice the RAM going up to a base configuration of 1 megabyte, and a 44MB hard disk, the price is $6,995 or a 20% price increase!

What lead to this massive stagnation from 1985 to 1987? I’m sure it has almost everything to do with Don Estridge’s untimely death in 1985. I can’t imagine IBM releasing an XT years later with the same design language as the new ‘powerful’ machines, no doubt just fooling consumers into thinking they are ready for the 1990’s when instead, it’s a product more akin to 1982.

IBM PS/2 models at a glance – InfoWorld 6 Apr 1987

From Infoworld 1988:

On the one hand, IBM has shipped nearly 2 million PS/2s in the year since the machines were introduced. The Model 50 is currently the best-selling microcomputer in the industry a position it has held since November 1987, according to market research firm Store-board Inc. What makes these figures even more significant, say analysts, is that many of the alleged benefits of the PS/2 have yet to be fully exploited.

InfoWorld 4 Apr 1988

Although there was certainly an initial corporate interest in the PS/2’s IBM did not keep up with faster Intel CPUs quick enough and failed to keep up interest in the base models, leading to significant price cuts in the spring of 1988.

Drastic price cuts – InfoWorld 18 Apr 1988

Time and time again you’ll hear how there was no software poised to take charge of these 286/386 models, and there was no compelling reason to do so. And it’s why it was such a big mistake to not have allowed Microsoft to being GDI to OS/2 along with it’s working drivers & applications to have shortened development time to get them to market. By shipping these expensive premium machines without OS/2 (normal users don’t change operating systems), and the double slap insult being that none of these machines are capable out of the box of running *any* version of OS/2 it’s not hard to see why it failed.

Okay so the PS/2 was too expensive!

Actually, it was too cheap! They should have not bothered with the new look XTs it only created branding confusion, and really all 286/386 equipped models should have been able to run OS/2, with no upgrades needed. I can’t imagine anyone would be happy after spending six plus thousand on a new machine to only find out that to run the OS of the future, you need to spend a few more thousand.

Windows was irrelevant in 1987!

There is no doubt that being able to run Windows applications natively on OS/2 would have only helped it tremendously, as OS/2 would be the ‘professional’ version of Windows. Although OS/2 did achieve this through paravirtualization, having GDI/USER native to OS/2 would have consumed far less ram as you wouldn’t need to load two windowing environments at once!

While Balance of Power may not have been the #1 chart topper, it was one of the first commercial games for Windows (Maybe it was the first?), showing that instead of developing UI code & drivers, that even a run-time platform was a viable choice.

v86 mode was too difficult and it delayed OS/2 2.0 for years!

What if I told you that there is FOOTBALL & PIGSKIN? Granted they are text mode, but they absolutely incorporate v86 mode into what is basically OS/2 1.0. In 1987. Why was there no OS2/386? Yeah. IBM.

Instead, all the 1.x versions of OS/2 had a SINGLE MS-DOS box, or penalty box, even the 386 has the single DOS session limitation. So if your work flow was stuck to a single DOS session what compelling reason would there be to upgrade to OS/2? NONE. Speaking of 1987 however there was Windows/386 towards the end of the year.

Windows/386, is the friendliest glance into today’s future (Think of it as a graphical hypervisor, like VMware/KVM). Windows was the one environment where Microsoft didn’t need IBM’s permission to do anything, or adhere to any other standards, Microsoft added v86 support into Windows, and it brought mainframe power to the average user, by allowing them to create virtual machines running their own isolated MS-DOS applications, and even allowing copy/paste of data from between them, and into new Windows applications. While Windows 2 was a shadow of what would become the Windows 3.0 juggernaut of 1990, it was quickly headed in the right direction.

What is it with the 386 anyways?

And why were they so adverse to the 386? the 1st gen Model 80 motherboard feels more like a begrudging reaction to Compaq rather than what it should have been by the time they released the 3rd – 25Mhz version, with onboard cache controller & ram. Beyond v86 mode, there was the large memory space, and 32bit registers making it possible to port minicomputer (and even mainframe) programs to the PC. Was this desktop future too scary for IBM? Did they really thing that by refusing to adopt the 386 that they could somehow influence the rest of the market to not being 32bit computing to the masses? Even in the early 80’s there was the Definicon, a NS32016 cpu board you could plug into your IBM PC and unleash a programmable 32bit processor with upwards of 2MB of RAM. If IBM was not going to make a 32bit computer, others would find a way, utilizing the ever-increasing supply of open PC hardware.

As far as I can tell IBM didn’t even permit Windows/386 or any version of Windows to be bundled or shipped with the PS/2’s further alienating them from the growing market of software. And of course, by not increasing the RAM the pre-loaded operating system was still PC-DOS, not OS/2. It really shakes confidence when IBM won’t even preload their jointly developed Operating System of the future.

Then along came Windows.

While Windows 3.0 was fine enough running in 16bit protected mode on both the 286 & 386, having the ability to launch v86 machines, and take advantage of hardware paging of the 386 on Windows 3.0. At least you were 2/3rds of the chip’s capabilities, unlike OS/2 1.x where you used none.

There is money in those developer hills!

Time and time again, this has been one of the industry’s biggest failings. Just as IBM charged a fortune for SDK’s and DDKs all it did was raise the bar so high very few people paid for them, strangling the supply of apps & drivers.

InfoWorld 6 Apr 1987

While the PS/2’s were very expandable, it seems outside of collectors, very few are. Which again speaks to why it was so important to get that initial pre-loaded configuration right. And you control that with the pre-load, just as Apple forced the wedge by first loading OS X onto machines, then making it the default. At best with Warp IBM pre-loaded it on many devices, but users were oblivious that it was even there. It was more than once I’d seen someone buy a retail copy of Warp, to run this OS/2 thing to only find out their ThinkPad already had a copy.

$3,000 a bargain!

The prices to get started with technical information, the toolkit and a compiler may seem expensive, but compared to the infamous $3,000 SDK & seminars.

As Steve would say – “Developers” – ViciousAloisius

Instead, developers should have been given copies for free, or even back then, on the MSPL. While the Microsoft Programmer’s Library is an invaluable resource, the lack of tools is just odd. Why even have slack space on those early CD-ROMs?

No doubt all the painful lessons were learned from OS/2 for Windows. Just as Windows NT ended up being everything NTOS/2 3.0 was going to be.

So yeah, really it was the PS/2 Model 60?

Bringing out a super expensive 16bit machine in 1987, holding Microsoft back in every technical way possible, along with all the poor choices revolving around IBM’s fear of the 386, and the 32bit future doomed OS/2 before it even began.

At best the 8086/80286 machines should have been cheap machines for MS-DOS present, but again the outlier is the PS/2 Model 60. Far too expensive with no real compelling reason to buy one – Don’t get me wrong I love mine! But it’s incredibly impractical.

If anything, once more again, OS/2 1.x should never been a thing, it performs terribly on 286’sand the single 3xdos session is just painful. With its heavy requirements, it always should have been targeting the 386, and the brave future of 1987 onwards, not 1984, and certainly not the PS/2 model 60, which never should have existed.

Hamstringing OS/2 to the $6,995 PS/2 model 60 in 1987 doomed it all from the start. It never stood a chance.

Porting Sarien to OS/2 Presentation Manager

Originally with all the buildup of compilers & GCC ports to OS/2, I had a small goal of getting Sarien running on OS/2. I did have it running on both a 286 & 386 DOS Extender, so the code should work fine, right?

To recap, years ago I had done a QuakeWorld port to OS/2 using the full screen VIO mode, a legacy hangover from 16bit OS/2. It works GREAT on the released 2.00 GA version. I went through the motion of getting the thunking from 32bit mode to 16bit mode, to find out that it doesn’t exist in the betas!

No VIO for you!
No VIO access from 32bit

So that meant I was going to have to break down and do something with Presentation Manager.

So the first thing I needed was a program I could basically uplift into what I needed, and I found it through FastGPI.

Donald Graft’s FastGPI

While it was originally built with GCC, I had rebuilt it using Visual C++ 2003 for the math, and the Windows NT 1991 compiler for the front-end. As you can see it works just fine. While I’m not a graphical programmer by any stretch, the source did have some promise in that it creates a bitmap in memory, alters it a runtime, and blits (fast binary copy) it to the Display window. Just what I need!

  for (y = 0; y < NUM_MASSES_Y; y++)
  {
    for (x = 0; x < NUM_MASSES_X; x++)
    {
      disp_val = ((int) current[x][y] + 16);
      if (disp_val > 32) disp_val = 32;
      else if (disp_val < 0) disp_val = 0;
      Bitmap[y*NUM_MASSES_X+x] = RGBmap[disp_val];
    }
  }

It goes through the X/Y coordinate plane of the calculated values, and stores them as an RGB mapping into the bitmap. Seems simple enough right?

  DosRequestMutexSem(hmtxLock, SEM_INDEFINITE_WAIT);

  /* This is the key to the speed. Instead of doing a GPI call to set the
     color and a GPI call to set the pixel for EACH pixel, we get by
     with only two GPI calls. */
  GpiSetBitmapBits(hpsMemory, 0L, (LONG) (NUM_MASSES_Y-2), &Bitmap[0], pbmi);
  GpiBitBlt(hps, hpsMemory, 3L, aptl, ROP_SRCCOPY, BBO_AND);

  DosReleaseMutexSem(hmtxLock);

It then locks the screen memory, and then sets up the copy & uses the magical GpiBitBlt to copy it to the video memory, then releases the lock. This all looks like something I can totally use!

I then have it call the old ‘main’ procedure form Sarien as a thread, and have it source the image from the Sarien temporary screen buffer

disp_val = ((int) screen_buffer[y*NUM_MASSES_X+x] );

Which all looks simple enough!

Y/X instead of X/Y!

And WOW it did something! I of course, have no keyboard, so can’t hit enter, and I screwed up the coordinates. I turned off the keyboard read, flipped the X/Y and was greeted with this!

Welcome to OS/2 where the memory is the total opposite of what you expect.

And it’s backwards. And upside down. But it clearly is rendering into FastGPI’s gray palette! I have to admit I was really shocked it was running! At this point there is no timer, so it runs at full speed (I’m using Qemu 0.80 which is very fast) and even if there was keyboard input it’d be totally unplayable in this reversed/reversed state.

The first thing to do is to flip the display. I tried messing with how the bitmap was stored, but it had no effect. Instead, I had to think about how to draw it backwards in RAM.

  {
    for (x = 0; x < NUM_MASSES_X; x++)
    {
      disp_val = ((int) screen_buffer[y*NUM_MASSES_X+x] );	//+ 16);
      if (disp_val > 32) disp_val = 32;
      else if (disp_val < 0) disp_val = 0;
      Bitmap[((NUM_MASSES_Y-y)*(NUM_MASSES_X))-(NUM_MASSES_X-x)] = RGBmap[disp_val];
    }
  }
Running in the correct orientation

Now comes the next fun part, colour.

I had made the decision that since I want to target as many of the OS/2 2.0 betas as possible they will be running at best in 16 colour mode, so I’ll stick to the CGA 4 colour modes. So the first thing I need is to find out what the RGB values CGA can display.

This handy image is from the The 8-Bit Guy’s video “CGA Graphics – Not as bad as you thought!” but here are the four possible sets:

All the possible CGA choices

And of course I got super lucky with finding this image:

So now I could just manually populate the OS/2 palette with the appropriate CGA mapping, just like how it worked in MS-DOS:

First define the colours:

#define CGA_00 0x000000
#define CGA_01 0x0000AA
#define CGA_02 0x00AA00
#define CGA_03 0x00AAAA
#define CGA_04 0xAA0000
#define CGA_05 0xAA00AA
#define CGA_06 0xAA5500
#define CGA_07 0xAAAAAA
#define CGA_08 0x555555
#define CGA_09 0x5555FF
#define CGA_10 0x55FF55
#define CGA_11 0x55FFFF
#define CGA_12 0xFF5555
#define CGA_13 0xFF55FF
#define CGA_14 0xFFFF55
#define CGA_15 0xFFFFFF

Then map the 16 colours onto the CGA 4 colours:

OS2palette[0]=CGA_00;
OS2palette[1]=CGA_11;
OS2palette[2]=CGA_11;
OS2palette[3]=CGA_11;
OS2palette[4]=CGA_13;
OS2palette[5]=CGA_13;
OS2palette[6]=CGA_13;
OS2palette[7]=CGA_15;
OS2palette[8]=CGA_00;
OS2palette[9]=CGA_11;
OS2palette[10]=CGA_11;
OS2palette[11]=CGA_11;
OS2palette[12]=CGA_13;
OS2palette[13]=CGA_13;
OS2palette[14]=CGA_13;
OS2palette[15]=CGA_15;
CGA on PM!

So now it’s looking right but there is no timer so on modern machines via emulation it runs at warp speed. And that’s where OS/2 shows its origins is that it’s timer ticks about every 32ms, so having a high resolution timer is basically out of the question. There may have been options later one, but those most definitively will not be an option for early betas. I thought I could do a simple thread that counts and sleeps, as hooking events and alarms again suffer from the 32ms tick resolution problem so maybe a sleeping thread is good enough.

static void Timer(){
for(;;){
	DosSleep(20);
	clock_ticks++;
	}
}

And it crashed. Turns out that I wasn’t doing the threads correctly and was blowing their stack. And somehow the linker definition file from FastGPI kept sneaking back in, lowering the stack as well.

Eventually I got it sorted out.

The next big challenge came of course from the keyboard. And I really struggled here as finding solid documentation on how to do this is not easy to come by. Both Bing/google want to suggest articles about OS/2 and why it failed (hint it’s the PS/2 model 60), but nothing much on actually being useful about it.

Eventually through a lot of trial and error, well a lot of errors I had worked uppon this:

    case WM_CHAR:
      if (SHORT1FROMMP(parm1) & KC_KEYUP)
        break;
pm_keypress=1;
      switch (SHORT1FROMMP(parm1))
      {
      	case VK_LEFT:
	key_from=KEY_LEFT;
	break;
	case VK_RIGHT:
	key_from=KEY_RIGHT;
	break;
	case VK_UP:
	key_from=KEY_UP;
	break;
	case VK_DOWN:
	key_from=KEY_DOWN;
	break;

	case KC_VIRTUALKEY:
	default:
	key_from=SHORT1FROMMP(parm2);
	break;
      } 

I had cheated and just introduced 2 new variables, key_from, pm_keypress to signal a key had been pressed and which key it was. I had issues mapping certain keys so it was easier to just manually map the VK_ mapping from OS/2 into the KEY_ for Sarien. So it triggers only on single key down events, and handles only one at a time. So for fast typers this sucks, but I didn’t want to introduce more mutexes, more locking and queues or DIY circular buffers. I’m at the KISS stage still.

I’m not sure why it was dropping letters, I would hit ‘d’ all I wanted and it never showed up. I then recompiled the entire thing and with the arrow keys now mapped I could actually move!

Roger walks for the first time!

And just like that, Roger Wilco now walks.

From there I added the savegame fixes I did for the 286/386 versions, along with trying to not paint every frame with a simple frame skip and…

Sarien for OS/2 running at 16Mhz

And it’s basically unplayable on my PS/2 model 80. Even with the 32bit XGA-2 video card.

I had to give it a shot under 86Box, to try the CGA/EGA versions:

CGA

It’s weird how the image distorts! Although the black and white mapping seems to work fine.

Sarien on EGA

I should also point out that the CGA/EGA versions are running on OS/2 2.0 Beta 6.123, which currently is the oldest beta I can get a-hold of. So at the least I did reach my goal of having a 32bit version for early OS/2.

I would imagine it running okay on any type of Pentium system, however. So, what would the advantage of this, vs just running the original game in a dos box? Well, it is a native 32bit app. This is the future that was being sold to us back in 1990. I’m sure the native assembly that Sierra used was far more efficient and would have made more sense to just be a full screened 16bit VIO application.

So how long did it take to get from there to here? Shockingly not that much time, 02/20/2024 6:02 PM for running FastGPI, to 02/20/2024 10:56 PM For the first image being displayed in Presentation Manager, and finally 02/21/2024 10:39 PM to when I was first able to walk. As you can see, that is NOT a lot of time. Granted I have a substantially faster machine today than what I’d have in 1990 (I didn’t get a 286 until late 91? early 92?), compiling Sarien on the PS/2 takes 30-40 minutes and that’s with the ultra-fast BlueSCSI, compared to even using MS-DOS Player I can get a build in about a minute without even compiling in parallel.

I’ve put the source over on github: neozeed/sarienPM: Sarien for OS/2 (github.com)

I think the best way to distribute this is in object form, so I’ve created both a zip & disk image containing the source & objects, so you can link natively on your machine, just copy the contents of the floppy somewhere and just run ‘build.cmd’ which will invoke the system linker, LINK386 to do it’s job. I have put both the libc & os2386 libraries on the disk so it should just work about everywhere. Or it did for me!

So that’s my quick story over the last few days working on & off on this simple port of Sarien to OS/2 Presentation Manager. As always, I want to give thanks to my Patrons!

Thunking for fun & a lack of profit

So, with a renewed interest in OS/2 betas, I’d been getting stuff into the direction of doing some full screen video. I’d copied and pasted stuff before and gotten QuakeWorld running, and I was looking forward to this challenge. The whole thing hinges on the VIO calls in OS/2 like VioScrLock, VioGetPhysBuf, VioScrUnLock etc etc. I found a nifty sample program Q59837 which shows how to map into the MDA card’s text RAM and clear it.

It’s a 16bit program, but first I got it to run on EMX with just a few minor changes, like removing far pointers. Great. But I wanted to build it with my cl386 experiments and that went off the edge. First there are some very slick macros, and Microsoft C just can’t deal with them. Fine I’ll use GCC. Then I had to get emximpl working so I could build an import library for VIO calls. I exported the assembly from GCC, and mangled it enough to where I could link it with the old Microsoft linker, and things were looking good! I could clear the video buffer on OS/2 2.00 GA.

Now why was it working? What is a THUNK? Well it turns out in the early OS/2 2.0 development, they were going to cut loose all the funky text mode video, keyboard & mouse support and go all in on the graphical Presentation Manager.

Presentation Manager from OS/2 6.605

Instead, they were going to leave that old stuff in the past, and 16bit only for keeping some backwards compatibility. And the only way a 32bit program can use those old 16bit API’s for video/keyboard/mouse (etc) is to call from 32bit mode into 16bit mode, then copy that data out of 16bit mode into 32bit mode. This round trip is called thunking, and well this sets up where it all goes wrong.

Then I tried one of the earlier PM looking betas 6.605, and quickly it crashed!

SYS2070:

Well this was weird. Obviously, I wanted to display help

Explanation:

This ended up being a long winded way of saying that there is missing calls from DOSCALL1.DLL. Looking through all the EMX thunking code, I came to the low level assembly, that actually implemented the thunking.

EXTRN   DosFlatToSel:PROC
EXTRN   DosSelToFlat:PROC

After looking at the doscalls import library, sure enough they just don’t exist. I did the most unspeakable thing and looked at the online help for guidance:

No VIO

So it turns out that in the early beta phase, there was no support for any of the 16bit IO from 32bit mode. There was no thunking at all. You were actually expected to use Presentation Manager.

YUCK

For anyone crazy enough to care, I uploaded this onto github Q59837-mono

It did work on the GA however so I guess I’m still on track there.

Porting GCC to 32bit OS/2

I know what you are going to think, that it was already done, and it was called EMX. Or was it GCC/2? Well sure but what if you are not running the GA (General availability) version of OS/2. For example, years ago I had managed to get Citrix Multiuser 2.0, and it’s not at the GA level. All that is available is some ancient beta version of Microsoft C 5.2 from 1989?!

A little while back I had worked on getting GCC to build and run on the FPU enabled versions of Windows NT from 1991. I had mentioned that it turns out thanks to the Xenix assembler, that GCC had been basically available the entire time Windows NT had been available, but lamented that since the OS/2 compiler is 16/32bit, the 5.2 compiler couldn’t handle compiling GCC without blowing it’s heap. 16bit issues in a 64bit world.

However after doing some research on all the early cl386 compilers I could get my hands on, including the Windows NT Pre-release ones, I’d noticed that if I built CC1.EXE (the actual compiler) first for Win32, then rebuilt those object files with the December NT Pre-release compiler, that some versions of LINK386 from the OS/2 2.1 DDK would actually link with them. And sure enough it worked!

First life of GCC on OS/2

I have to admit I was pretty amazed, I had managed to ‘cross compile’ GCC using quite the tool chain.

First the compiler from the December NT Pre-release CD-ROM is shipped as a 16bit OS/2 compiler, but I’m using Windows 11. First I use the MS-DOS player with a quick fix from crazyc to allow Phar Lap 286|Dos Extender to run, which provides a basic enough OS/2 emulation to allow the compiler to run under ‘dos’. The linker on the DDK suffers the same fate as far as it also being 16bit. However the combination of MS-DOS player & Phar Lap gets stuff working! The only weird catch is that the 386 emulator causes strange floating point related crashes, while the 286 or 486 emulators work fine.

Now targeting OS/2 or running on OS/2 isn’t all that new, but building it from a Microsoft C compiler is. And now of course you’ll ask yourself, who cares? why is it interesting?

Well, the vast majority of the GCC ports to OS/2 don’t support the OMF object file binary standard, instead they used the much outdated a.out format, and rely on tools to convert the objects if needed. Additionally, they have DLL dependencies, and other startup issues with things needing to be setup. And of course they rely on a binary standard that is ‘GA’. *HOWEVER* by using a Microsoft compiler, I have OMF object files that the OS/2 built in system linker LINK386 can understand. So in plain English I can just relink the compiler and it’ll run on a new ‘version’ of unsupported OS/2.

I made a diskette image with my objects & a linker script and in a few moments I had it running!

GCC running on OS/2 2.00 6.123

The substantial thing here is that the binary format for OS/2 changed twice, and each release introduced changes that broke binary compatibility, in an effort to force people onto the new tools. So there is no way that the old ‘LE’ format would ever work. And you can see it’s running! In addition I could take the same object files, and copy them to my Citrix server, and likewise it was just a matter of linking, and it too now has GCC!

Converting a.out to OMF via emxomf

One annoying thing is that the LINK386 that ships with OS/2 2.00 GA doesn’t like the output of the Xenix assembler, so I built the a.out traditional assembler, and the emxomf tool to convert the a.out to OMF, and that worked well.

I still have much to mess with, including the pre-processor & main ‘gcc’ program. I have not built anything beyond a trivial program, so there is indeed much more work to be done before I can even try anything challenging. Some programs like emxomf have portions in the debug support that require the ‘long long’ type, which obviously Microsoft compilers from 1989-1991 don’t have, so I’ll have to re-build them with GCC.

Ive been putting my ports onto github (cl386-research) as it handles the rapid changes well enough. It’s a bit of a complex setup and it involves using a build system that I’ve put over on archive.org here: cl386-research-v2.

Not that I can imagine anyone wanting to try but I’ve uploaded some disks with the objects. Copy them to a hard drive, and run the ‘build.cmd’ command and it’ll link to a native freestanding executable.

I’ll explain it more with a post later, along with going over all the versions of cl386 I’ve acquired, over the years in more of a part 2: Targeting OS/2 with Visual Studio 2003!

Totally unfair comparison of Microsoft C

Because I hate myself, I tried to get the Microsoft OS/2 Beta 2 SDK’s C compiler building simple stuff for text mode NT. Because, why not?!

Since the object files won’t link, we have to go in with assembly. And that of course doesn’t directly assemble, but it just needs a little hand holding:

Microsoft (R) Program Maintenance Utility   Version 1.40
Copyright (c) Microsoft Corp 1988-93. All rights reserved.

        cl386 /Ih /Ox /Zi /c /Fadhyrst.a dhyrst.c
Microsoft (R) Microsoft 386 C Compiler. Version 1.00.075
Copyright (c) Microsoft Corp 1984-1989. All rights reserved.

dhyrst.c
        wsl sed -e 's/FLAT://g' dhyrst.a > dhyrst.a1
        wsl sed -e "s/DQ\t[0-9a-f]*r/&XMMMMMMX/g" dhyrst.a1  | wsl sed -e "s/rXMMMMMMX/H/g" > dhyrst.asm
        ml /c dhyrst.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993.  All rights reserved.

 Assembling: dhyrst.asm
        del dhyrst.a dhyrst.a1 dhyrst.asm
        link -debug:full -out:dhyrst.exe dhyrst.obj libc.lib
Microsoft (R) 32-Bit Executable Linker Version 1.00
Copyright (C) Microsoft Corp 1992-93. All rights reserved.

I use sed to remove the FLAT: directives which makes everything upset. Also there is some weird confusion on how to pad float constants and encode them.

CONST   SEGMENT  DWORD USE32 PUBLIC 'CONST'
$T20001         DQ      0040f51800r    ;        86400.00000000000
CONST      ENDS

MASM 6.11 is very update with this. I just padded it with more zeros, but it just hung. I suspect DQ isn’t the right size? I’m not 386 MASM junkie. I’m at least getting the assembler to shut-up but it doesn’t work right. I’ll have to look more into it.

Xenix 386 also includes an earlier version of Microsoft C / 386, and it formats the float like this:

CONST   SEGMENT  DWORD USE32 PUBLIC 'CONST'
$T20000         DQ      0040f51800H    ;        86400.00000000000
CONST      ENDS

So I had thought maybe if I replace the ‘r’ with a ‘H’ that might be enough? The only annoying thing about the Xenix compiler is that it was K&R so I spent a few minutes porting phoon to K&R, dumped the assembly and came up with this sed string to find the pattern, mark it, and replace it (Im not that good at this stuff)

wsl sed -e "s/DQ\t[0-9a-f]r/&XMMMMMMX/g" $.a1 \
| wsl sed -e "s/rXMMMMMMX/H/g" > $*.asm

While it compiles with no issues, and runs, it just hangs. I tried the transplanted Xenix assembly and it just hangs as well. Clearly there is something to do with how to use floats.

I then looked at whetstone, and after building it noticed this is the output compiling with Visual C++ 8.0

      0       0       0  1.0000e+000 -1.0000e+000 -1.0000e+000 -1.0000e+000
  12000   14000   12000 -1.3190e-001 -1.8218e-001 -4.3145e-001 -4.8173e-001
  14000   12000   12000  2.2103e-002 -2.7271e-002 -3.7914e-002 -8.7290e-002
 345000       1       1  1.0000e+000 -1.0000e+000 -1.0000e+000 -1.0000e+000
 210000       1       2  6.0000e+000  6.0000e+000 -3.7914e-002 -8.7290e-002
  32000       1       2  5.0000e-001  5.0000e-001  5.0000e-001  5.0000e-001
 899000       1       2  1.0000e+000  1.0000e+000  9.9994e-001  9.9994e-001
 616000       1       2  3.0000e+000  2.0000e+000  3.0000e+000 -8.7290e-002
      0       2       3  1.0000e+000 -1.0000e+000 -1.0000e+000 -1.0000e+000
  93000       2       3  7.5000e-001  7.5000e-001  7.5000e-001  7.5000e-001

However this is the output from C/386:

      0       0       0  5.2998e-315  1.5910e-314  1.5910e-314  1.5910e-314
  12000   14000   12000  0.0000e+000  0.0000e+000  0.0000e+000  0.0000e+000
  14000   12000   12000  0.0000e+000  0.0000e+000  0.0000e+000  0.0000e+000
 345000       1       1  5.2998e-315  1.5910e-314  1.5910e-314  1.5910e-314
 210000       1       2  6.0000e+000  6.0000e+000  0.0000e+000  0.0000e+000
  32000       1       2  5.2946e-315  5.2946e-315  5.2946e-315  5.2946e-315
 899000       1       2  5.2998e-315  5.2998e-315  0.0000e+000  0.0000e+000
 616000       1       2  5.3076e-315  5.3050e-315  5.3076e-315  0.0000e+000
      0       2       3  5.2998e-315  1.5910e-314  1.5910e-314  1.5910e-314
  93000       2       3  5.2972e-315  5.2972e-315  5.2972e-315  5.2972e-315

Great they look nothing alike. So something it totally broken. I guess the real question is, does it even work on OS/2?

Since I should post the NMAKE Makefile so I can remember how it can do custom steps so I can edit the intermediary files. Isn’t C fun?!

INC = /Ih
OPT = /Ox
DEBUG = /Zi
CC = cl386

OBJ = dhyrst.obj

.c.obj:
	$(CC) $(INC) $(OPT) $(DEBUG) /c /Fa$*.a $*.c
	wsl sed -e 's/FLAT://g' $*.a > $*.a1
	wsl sed -e "s/DQ\t[0-9a-f]*r/&XMMMMMMX/g" $*.a1 \
	| wsl sed -e "s/rXMMMMMMX/H/g" > $*.asm
	ml /c $*.asm
	del $*.a $*.a1 $*.asm

dhyrst.exe: $(OBJ)
        link -debug:full -out:dhyrst.exe $(OBJ) libc.lib

clean:
        del $(OBJ)
        del dhyrst.exe
        del *.asm *.a *.a1

As you can see, I’m using /Ox or maximum speed! So how does it compare?

Dhrystone(1.1) time for 180000000 passes = 20
This machine benchmarks at 9000000 dhrystones/second

And for the heck of it, how does Visual C++ 1.0’s performance compare?

Dhrystone(1.1) time for 180000000 passes = 7
This machine benchmarks at 25714285 dhrystones/second

That’s right the 1989 compiler is 35% the speed of the 1993 compiler. wow. Also it turns out that MASM 6.11 actually can (mostly) assemble the output of this ancient compiler. It’s nice when something kind of work. I can also add that the Infocom ’87 interpreter works as well.

YAY!

Don’t waste money on a math coprocessor they said;

You don’t need it they said!

Well it’s been no secret, but OS/2 6.123 on my PS/2 model 80, is insanely unstable running simple MS-DOS based games (large EXE’s)

And almost always I’d get this fun error:

SYS0037: The system cannot write to the write-protected c: drive.

Followed by a crash trying to execute code at the top of the memory MAP (ABIOS?)

Illegal instruction at 0xffffffff

Then ending the program will just crash OS/2. Very annoying!

My goto test of v86 mode environments is an old game that I enjoyed as a kid, 1988’s BattleTech the Crescent Hawks inception.

Infocom’s Battle Tech

It’s a great game, that runs on many 8-bit/16-bit systems of the era, and is surprisingly a very well behaved MS-DOS game. I mean if Windows/386 VGA machines can run it in a window using the CGA version, surely a super early OS/2 2.0 beta (6.123) can run it, right? However I found 6.123 to be incredibly unstable, and sadly not up to the task.

I tried to launch BattleTech over and over and had zero success. I couldn’t figure out why it was struggling on my model 80 board, where it runs just great on 86Box. What is going on?

One thing I had stumbled upon was that if I launched an ancient Infocom game in a DOS box, and then launched BattleTech it had a much higher chance of running. But this did not always equate to it working. How is launching an old COM file from the early 80’s excise the ‘devil’ of some 1988 EXE from running?

IIT 3C87-25

I wasn’t sure but I had this weird suspicion that it was that my system was lacking a math coprocessor. When I had the model 60 286 board in the PS/2 case I did spring for an 80287, and one thing I found is that OS/2 1.0 & 1.21 ran great. As a matter of fact I think it ran better than when I used to have a 386sx-16 and then later a 486SX-20. Now it’s been closer to 30 years, so I could have an absolutely false memory of all this, but I wasn’t sure I was onto something. So while shopping around a subscriber offered me a math coprocessor as they seem to be insanely expensive in the UK. I have no idea why the 80287 was so cheap, and no idea how to make any kind of adapter, but pJok was able to score one for super cheap in his homeland and send it to the barren wastelands of Scotland. As I was wrapping up the SSD G5 fun, the coprocessor arrived, and it was time to install it!

Note the purple 80386! It’s what we might call foreshadowing

The PS/2 8580 motherboard is really oddly designed with chip orientation going in every which other direction, and the 80387 socket isn’t keyed by pin, so it’s vital to see the notches on the silkscreen. Otherwise I just used compressed air to blow out the socket, and run the reference disk to add the processor.

Installed!

The processor was instantly picked up, although I had the crashing issue with the BocaRAM/2 memory card again, which meant I had to remove the RAM card, re-configure with the math coprocessor, then add the RAM card, reconfigure, then run the util to patch the CMOS so it’d boot up. I really dislike this RAM card, but 32bit cards cost far more than this entire endeavor cost so I’m pretty much stuck with it.

Now let’s compare the Landmark scores between the 286/287 and the 386/ITT387

Landmark System Speed Test with the PS/2 model 60 80286/80287

And now the 386:

Landmark System Speed Test with the PS/2 model 80 80386/ITT 80387

The ITT processor is significantly faster than the old 80287, which is pretty amazing. The system bus is running at 16Mhz, although being 32bit vs 16bit yielding a nearly 2x in performance, although the ITT co-processor is so much more efficient.

Booting back into OS/2 6.123, and yeah now it just works! No fussing around, everything is just great.

I’m kind of lost too, as none of this should require the maths coprocessor, but the results speak for themselves. I used to wonder once I got some disk images for this ancient version of OS/2, why didn’t they ship it? Sure that insane fight with Microsoft on refusing something like Windows on OS/2, or even WLO like Windows IN OS/2 from being part of the product killed any hope of running apps, but this version of OS/2 is already caught in the trap that it can run MS-DOS so well, despite DPMI not being a thing right now.

As I’d mentioned it does run just fine in 86Box, so what is the deal? Well that lead me to look back at when it did crash I noticed an odd string 038600b1

OS/2 6.123 crash screen. TRAP 000e

So what does this mean? Well looking back at the CPU let’s try to decode some of it

16Mhz 80386

First, it’s an A80386-16, which really isn’t that hard to figure out it’s a 16Mhz rated 80386. Next is the revision level, S40344. Searching around we can find this table:

S40276 - A1 (but probably 12 MHz as S40277 is 12 MHz)
S40334 - A2
S40336 - B0
S40337 is B0 stepping
S40343 - B1
S40344 is B1 stepping
S40362 - B1 (20 MHz)

So this places it at at the tail end of the introductory line of 386 processors. Checking over at pcjs, we find that there were quite a few more revisions to the 386.

And further that the B1 Errata is actually quite substantial. Maybe this is why the 386 had such a poor reputation for Unix ports in the day, and why it was shunned by CSRG?

As mentioned in the infamous 32bit multiply bug, this processor had been tested and was given the ΣΣ mark of approval. There are numerous issues listed with the presence of a math coprocessor, I have to wonder if beyond issues for using the full 32bit datapath, if there were some electrical issues with utilizing the full datapath as well? Much like an improperly terminated SCSI bus, did the simple presence of the ITT 387 help with signaling and improve system stability? Or am I hitting some weird bug in 32bit math that is simulated due to the lack of a coprocessor, that once one is in the system, the operation is performed on hardware, sidestepping the entire issue? I’m neither an EE or any good at reversing code, so I really don’t know.

The date code 751 does mean that this processor was manufactured in the 51st week of 1987.

Looking at how ancient this CPU is, I have opted to order one that was made in 1990, an SX218 or D1 stepping.

Although it hasn’t arrived yet, I have to wonder if it would make a really big difference in 32bit system stability? I have to wonder if there was such a massive delay in OS/2 2.0 because of the early 386 processors having so many defects that it just added an undue burden to the development, along with the fighting between IBM & Microsoft. While it would be interesting to see the difference between any of the Microsoft versions of OS/2 2.0, none have surfaced as of yet. Which is a shame.

Although it is nice to have this ‘mid’ IBM beta of OS/2, it does suffer from the ever so common issue of not being able to run any shipping 32bit executable, so unless you have source/object files to link, you are pretty much out of luck. The Microsoft Beta 2 tools are 16bit, so thankfully they run on pretty much any version of OS/2, and they ought to be able to run under Phar Lap 286 as well.

Microsoft OS/2 2.0 tee shirt

One thing that did recently surface on eBay, is a Microsoft tee shirt from their OS/2 2.0 group. With a minor bit of sleuthing, the Enterprise is from the 1989 ‘hit’ Star Trek V. Maybe I’m too much of a nerd to have recognized the GIF.

Back some 20+ years ago when I lived in Miami, I did have a loaded out PS/2 model 80 back then, and I ran AIX on it, as I thought it was really cool. But it was also incredibly unstable. I have to wonder now if it was a fault of the processor, or the system? Then again back then I had 6 registered IP’s and of course my PS/2 was on the internet! Although it was also the right height to double as a standing mouse pad.

So I guess this potentially leaves us with some painful lesson that you ought to get the math coprocessor for older systems if you plan on running anything other than DOS/Windows with a DOS extender. While I do have a PS/2 version of Xenix, I haven’t been able to dump them yet as my Power Mac doesn’t like NON FAT disks. One thing is for sure, it made a massive difference in OS/2. I don’t think 16Mhz/6MB of RAM is anywhere near enough to run OS/2 2.00 at any decent speed so I’ll stick with the much lighter 6.123.

32bits of disappointment, upgrading the IBM PS/2 model 60

So long..

While I had enjoyed this fully loaded 286, it was getting a bit annoying with all the 32bit limitations I was running into. Frontier Elite was a 32bit program, Obviously no WIndows/386 nor any DooM. It seems that most of the MS-DOS fun I had really was 32bit only. So with this PS/2 model 60, I did the only real thing I could do:

PS/2 80 motherboard

I swapped the motherboard with a PS/2 model 80 board. I had seen this on eBay for a bit of an excessive price, offered 40% of said price, and woke up to having shockingly won the bid. Of course it also means that I need special 32bit RAM to boot the board, because “IBM”.

a 1MB module

I picked up 2 of these 1MB modules, they are 3 chip much like the SIMMS I had used on the PS/2 model 60 motherboard. So these are no doubt parity 256k in each row, and 2 cards giving it 2MB of RAM right off the bat. I got lucky to find these 2 cards in country and at a really reasonable rate, when compared to all the others. They did make 4MB & 8MB cards, but naturally they are incredibly expensive.

Bootup

Luckily for me the board & RAM worked (the board was listed as working), and running setup from the gotek was painless. However for the heck of it, I put in the Boca RAM/2 board to see if it works. It does. It also does the same thing where once the Boca RAM/2 board is configured the setup program only crashes on running it, meaning I need to disconnect the battery backed RAM.

I thought I could avoid setting up the RAM card, but oddly enough until I did so it would not initialize the SCSI card. Oh, sure it showed up in the setup program, saw all my disks and everything, but it would not boot or show up from a boot disk.

So now let’s re-visit the painful world of SCSI disks. I had bought one SCSI controller, and tore some pads off for being impatient, bought another and had it working fine with the approved cable, crashed the PS/2 MCA SCSI market, and then bought the caching faster controller card, to only reveal that it is in fact slower than the stupid card.

But it’s a 32bit card!

And now I have 32bit slots and a 32bit processor! Surely it’s going to ROCK!!!!….?

32bits of disappointment

It’s 0.3% faster.

What the actual FUCK. I mean ok BlueSCSI is great, and we’ve seen it perform faster with the ‘stupid’ card. I can’t imagine paying the $999 MSRP of this faster caching card to find out its slower. Nor the massive upgrade cost of going 32bit to find out its only slightly faster.

Wow.

Just Wow.

LANDMARK 6.00

That said, v86 mode is really cool!

My goto test for v86 is BattleTech the crescent hawk’s inception. I mean if Windows/386 can run this, everything else should be able to. And yeah, 16Mhz is almost enough to run this in a window. It screen tears like crazy and is just slow. But at least it runs!

Warning beeper music!

Although football was capable of doing this full screen in 1987, and Windows/386 could run it in a window in 1987 as well, it wasn’t until 1989/90 that OS/2 could with the much delayed 32bit version. Of course, the divorce happened after Windows 3.0 became such a massive seller, and OS/2 was delayed. again. While I had no issues under 86Box, I had plenty of weird issues on real hardware that seem to magically sort themselves out by running Infocom’s Planetfall first. I don’t know why either.

16Mhz Wing Commander

And luckily there is some difference in running at 16Mhz. Although I haven’t tried EMM386 on/off yet. The 286 had it’s excuse of copying pages in & out of protected mode, and the switch time being so horrific. But the 386 should be instant, only limited by it’s slow bus and I guess 4MB of slow RAM.

But what about DooM?

DooM v1.1 low resolution not quite postage stamp sized

Yes DooM v1.1 runs! I’ll have to try some Fast DooM later to see how much faster it can be! I’d like to think itll be faster but I am not holding out much hope.

Many of the bench stuff I had setup on the 286 to compare to the 386 sadly depend on a math processor. The problem of course is that 80287’s are very cheap for some reason. 80387’s however are not.

eBay special

And the majority of them look like this. I don’t know how on earth people have hundreds of 80287’s to sell at super cheap prices, but 80387’s all seem to have been trampled, or had their inner core’s turned into slag. I will keep a lookout, although knowing my luck it may be cheaper to find another motherboard with a 386/387 paring.

Speaking of OS/2 and weird crashes, I got this fun one from OS/2 trying to run sysinfo:

trap 000e on 038600b1

While I’d seen plenty of trapcodes in my time, but I know less than nothing about reading them. Maybe it’s burred in there somewhere. The one odd thing was the 038600b1 part… Since the 386 is a 16Mhz part, maybe it’s a crazy old version? While it does have the ΣΣ mark, maybe there is other troublesome 386’s? I really don’t know. Or maybe OS/2 is just really more sensitive to having 2MB 32bit RAM + 4MB 16bit RAM.

Way back in the old times, I had upgraded from a 12Mhz 286 to a 16Mhz 286, and life was great, although I left out of all the 32bit personal computer revolution. After a lot of hard work, I managed to secure a 386sx 16Mhz board with 4MB of RAM. It was awesome although yeah SLOW. Clock for clock, task for task the 386sx was at best the same speed. Sometimes I’d swear the 286 was faster. A few months later though I made the insane trade of some complete in box Infocom games, along with cash and was able to score a 386DX 16Mhz, along with 4MB of 32bit RAM on some massive board. Surely this was going to be great right? I found pretty much the same thing there was no perceivable difference at all. At least back then it was 1992? and the capacitor plague was still decades away, and you could just call the BBS of the motherboard vendor and download the disks if needed (I didn’t need to). It was, frankly, a big letdown after so much ’32/32 is far superior to 32/16′ and here we are again in the future and the SCSI card bears it out, that id basically didn’t matter.

I guess it really comes as no surprise that the 386 does everything the 286 can just better.

So, what have we learned? The PS/2 model 60/80 chassis is the exact same thing. The low clocked 386 chips are super unimpressive, no doubt the magic in the intel family really didn’t hit until the DX2/66 and beyond. Beta versions of software act weird, oh, and that the backup program from MS-DOS 5.00 can actually backup a dual booted OS/2 install & restore it just fine. That was a bigger surprise for me, as the great thing about the BlueSCSI i that I can have so many drives, so I made a backup of the C: OS drive and trashed it quite a bit. Not expecting anything, but yes, a restore actually worked.

Building OS/2 apps from QuickC for Windows

Hello from QuickC for Windows

Back in the olden days of when Microsoft had pivoted out of OS/2 in a hurry, I’ve always felt that the common ‘OMF’ objects ought to link for OS/2. But for some reason I never tried. But for some reason I thought I’d try it today.

I first installed Microsoft C 6.0, and set it up for a native OS/2 to OS/2 1.2 setup. This way I get a pure OS/2 include/library directory set. In retrospect, I don’t know why I didn’t just use 2 include / library directory sets to far easier target stuff, without dealing with changing the default names, and making linking an all around living hell.

So the first thing to do is to tell QuickC for Windows to default to the OS/2 include directory (turns out it wont link anyways). Compiling is nothing special. When setting up the project you’ll need a DEF file, I use this simple one:

NAME        QCO2 WINDOWAPI
PROTMODE
CODE        PRELOAD

Nothing to it!

I tried to fight the Windows linker, but it figures out what you are doing and won’t do it. But can you manually link? Well QuickC for Windows does include a DOS linker, and it’s oddly enough newer than the one for Microsoft C 6.0!

C:\proj\o2>msdos \WIN16APP\QCWIN\bin\link hi.obj

Microsoft (R) Segmented-Executable Linker  Version 5.15
Copyright (C) Microsoft Corp 1984-1991.  All rights reserved.

Run File [hi.exe]:
List File [NUL.MAP]:
Libraries [.LIB]: doscalls SLIBCE
Definitions File [NUL.DEF]: qco2.def

C:\proj\o2>msdos hi.exe
This program cannot be run in DOS mode.

Manually invoking the linker wasn’t all too hard, just answer the 30 questions. I did set the LIB environment variable so it picked up the libraries just fine. And yes, it created my OS/2 binary no problem!

And as you saw from above, yes it does run!

I do suppose the graphical editors would have been nice some 30 years ago, but in today’s era, sadly it doesn’t matter. QuickC for Windows won’t run under WLO, so this prevents it being a backdoor GUI/Protected mode compiler for OS/2. It’s a shame too as at least running under Windows 3.0, QuickC for Windows is WAY faster than using Microsoft C 6.00 in either read mode, protected mode with smartdrive.. I’m not sure what the deal is. Even with the advanced caching SCSI controller.

Not sure if anyone cares, but I think it’s cool.

OS/2 2.0 Technical Library on archive.org

It’s certainly one of those things that I’m surprised I didn’t buy when it was current, but glad binipafruc scanned the set.

PDF’s look nice on an iPad, but maybe that’s me being old.

It’s crazy that once uppon a time, corporations thought developer documentation was a revenue stream to their upstart Operating System. It went as well as you can imagine it would.