Cross Compiling 386BSD 0.1pl23 from Windows 10

I bumped the version to *current year*

Oh yes, this will be a thing!

Sure I can cross compile Linux, but what about 386BSD?  This had long been a thorn in my side, as the GCC/Binutil toolchain that is used in this early era is not GNU pure, they had been modified in all kinds of ways.  One of which was a builtin memcpy that doesn’t work the same as a normal memcpy, and the other being that the C compiler & pre-processor rely in YACC to build the tokens.  I had been using bison before, however even though bison didn’t generate any errors it build the compiler wrong enough that the majority of the kernel wouldn’t compile.

As it stands right now, the only things that do not compile is locore

to post process the kernel, symorder is used along with dbsym, although neither do any processing to the kernel file itself, so they aren’t needed to get a working system.

386BSD Release 0.1 by William and Lynne Jolitz.
Copyright (c) 1989,1990,1991,1992 William F. Jolitz. All rights reserved.
Based in part on work by the 386BSD User Community and the
BSD Networking Software, Release 2 by UCB EECS Department.
386BSD 0.1.2018 (GENERICISA) 02/02/18 15:01

Other than that, yeah it’s great, compile a kernel in under 15 seconds.

Anyone that cares, the initial release is here: 386bsd01.7z

 

GCC 1.27 & MS-DOS

Inspired by Building and using a 29-year-old compiler on a modern system, i thought I too could get this ancient version of GCC working.  At the time I never had bothered with the older version as I had always assumed that there were many fixes and adaptations to GCC for it to run on MS-DOS via GO32/DJGPP.  However, after doing this, it’s obvious that GO32/DJGPP was rather built around GCC’s stock output, which would sure make a lot more sense.

And it turns out that the target machine being an i386 Sequent running BSD is the best match, both in turns of underscores, and debugging format.  At first, I had tried the AT&T SYSV i386 target, however it couldn’t link anything from the standard libraries that DJGPP has as they all have a leading underscore.  After starting to mess with internal macros to turn things on and off, and re-define how various portions of assembly are emitted, I found the Sequent target and went with that and everything was fine and using the existing build infrastructure for GCC 1.39 I now could actually run hello world!

gcc_v1 -v -E hello.c -o hello.i
gcc version 1.39
cpp_v1 -v -undef -D__GNUC__ -DGNUDOS -Dunix -Di386 -D__unix__ -D__i386__ hello.c -o hello.i
GNU CPP version 1.39
gcc_v1 -v -S hello.i -o hello.s
gcc version 1.39
cc1_v1 hello.i -quiet -version -o hello.s
GNU C version 1.27 (80386, BSD syntax) compiled by GNU C version 5.1.0.
gcc_v1 -v -c hello.s -o hello.o
gcc version 1.39
as -o hello.o hello.s
gcc_v1 -v -o hello hello.o
gcc version 1.39
ld -o hello C:/dos/xdjgpp.v1/lib/crt0.o hello.o -lc

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie

hello from DJGPP v1/GCC 1.39!

Wasn’t that great?  Then going through my ‘test’ programs I went to try to build the infocom interpreter, and that is when things went off the rails.

funcs.o: Undefined symbol __udivsi3 referenced from text segment
options.o: Undefined symbol __divsi3 referenced from text segment
options.o: Undefined symbol __divsi3 referenced from text segment
print.o: Undefined symbol __divsi3 referenced from text segment
print.o: Undefined symbol __udivsi3 referenced from text segment
support.o: Undefined symbol __divsi3 referenced from text segment
gcc_v1: Program ld got fatal signal 1.

I’ve had some issues with GCC and these ‘built in’ functions before.  This was an early major stumbling block back in the x68000 GCC days, where after a lot of searching I was able to find 68000 versions of various math routines that were in the native Hudson Soft assembler to link in.  While GCC 1.x does have a libgnu/gnulib to include these functions it warns you over and over to not use GCC to build them, but rather the native CC.  But the problem is that I don’t have a native CC.

But I managed to save myself after googling around by finding srt0.c from 386BSD.  Namely these two:

.globl ___udivsi3
___udivsi3:
	movl 4(%esp),%eax
	xorl %edx,%edx
	divl 8(%esp)
	ret

.globl ___divsi3
___divsi3:
	movl 4(%esp),%eax
	xorl %edx,%edx
	cltd
	idivl 8(%esp)
	ret

I ended up having to removing a single underscore, but now I could link infocom, and even better it runs!

Wanting to try something far more exciting, I went ahead and tried to build DooM.  However, GCC 1.27 has an issue with m_fixed.c  I fired up GDB to at least take a look, although I’m not sure where the fault lies.

FixedMul
This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

Breakpoint 1, 0x752c5ad5 in msvcrt!_exit () from C:\WINDOWS\System32\msvcrt.dll
(gdb) bt
#0 0x752c5ad5 in msvcrt!_exit () from C:\WINDOWS\System32\msvcrt.dll
#1 0x752bb379 in msvcrt!abort () from C:\WINDOWS\System32\msvcrt.dll
#2 0x0045805c in final (first=0xe066a0, file=0x75312688 <msvcrt!_iob+128>, write_symbols=NO_DEBUG, optimize=0)
at final.c:653
#3 0x00403198 in rest_of_compilation (decl=0x722718) at toplev.c:1296
#4 0x0040fbce in finish_function () at c-decl.c:3272
#5 0x004040c0 in yyparse () at c-parse.y:224
#6 0x0040239d in compile_file (name=0xe00def "C:/dos/xdjgpp.v1/tmp/cca02992.cpp") at toplev.c:837
#7 0x00403a33 in main (argc=11, argv=0xe00f90, envp=0xe01598) at toplev.c:1556

With the code being:

#ifdef REGISTER_CONSTRAINTS
	    if (! constrain_operands (insn_code_number))
	      abort ();
#endif

So I assume some error with constrain operands? Not that it makes it any better.  However, I know this one file compiles fine with 1.39, and since we are on the i386 another alternative is just to use the assembly version that was hiding in the readme..

DooM mostly built by GCC 1.27

And much to my amazement, it works!  Keeping in mind that this is using an a.out tool chain, along with the last DPMI enabled GO32 extender.

Considering the compiler dates back from September 5th, 1988 it’s really great to see it running.

I’ll have to upload source (GCC 1.27/DooM) & binaries later.  But I imagine it should also run on EMX/RSX for a Win32 version.

BASIC language subset/dialect in C++

This one came to me from Peter, a set of C++ macros and define sets that implement a subset of BASIC.

YES, that is correct, BASIC.  It even has line number!  Let’s look at a simple hello world!

type hello.bas
#include “ptsvubas.cc

BEGINBASIC(int,main,(int argc, char* argv[]))
10 PRINT “Hello, world!”;
20 GOTO 40;
30 PRINT “I am not printed”;
40 END;
ENDBASIC

It’s compiled with GCC like this:

c++ -pipe -xc++ -fpermissive -w -o hello.exe hello.bas

And then run it!

Hello, world!

Neat!

From the docs in the main .cc file:

Implemented a BASIC language dialect/subset, with the following restrictions:

  •  All variables and statements must be allcaps
  • All lines must begin with a line number from 1 to 32767
  • All lines must have a trailing semicolon
  • One statement per line (except IF-THEN)
  • “THEN” must NOT be followed by a “GOTO” nor “GOSUB”!
    • Implemented keywords:
    • IF <C-style expression with “==” in case of equality> THEN <label>
    • GOTO <label>
    • GOSUB <label> / RETURN
    • STOP [optional errorlevel/return value]
    • END [optional errorlevel/return value]
    • LET <variable>=<expression>
    • PRINT <strings and/or variables in arbitrary order>
    • INPUT <one or more variables>
    • DIM <array variables with number of elements, p.ex. “NP(42)”>
    • FOR/NEXT loop (NEXT’s argument is mandatory, exactly one variable)
    • PRINT interprets comma as semicolon, except on the ENDS
      • thus PRINT does NOT interpret comma as tab injection
        basically, PRINT is some kind of writeln()
        but can be tricked: if CHR$(0) is inserted somewhere, it won’t print
        the remaining part including the trailing newline!
        variables are all float types, predeclared, and their names at most 2 chars long
    • (numerical) arrays can be used, must be declared before their first usage
    • Array numberings: DIM A(8) means that A(0) till A(7) are declared this way

So it’s not 100%, there is no strings, not even a REM (conver to C++ comments) so it’ll be a while until you can build more traditional basic programs.

Simple Mandelbrot set in BASIC

I used “mingw-i686-7.1.0-win32-dwarf-rt_v5-rev0” to test this on Windows.

You can download ptsvubas from it’s site here: vm01.unsoft.hu/~np/basic/latest/

NetHack in your browser via Moxie CPU

I saw this many years ago, but for some reason never finished writing about this. Moxie was a virtual CPU designed to be as simple as possible for the GNU toolchain to target.

Perhaps one of the more interesting things was a port of RTEMS to the Moxie CPU, and a port of Nethack to that architecture. And of course, there was a javascript simulator environment allowing me to easily embed it into this post.

Terminal uses canvas

So yes, it’s a virtual CPU, OS & Game, running in java-script and on the page.

Porting Catacomb3D to MS-DOS (DJGPP v1/GO32).

Catacomb 3-D for GO32

No really, it’s Catacomb 3-D: The Descent.  First ported to 32-bit SDL by NotStiller.  Me being the person I am, I fixed a slight bug regarding binary files on Windows, and MS-DOS, then cleaned up some of the C++ syntax (yuck!) making it far more C89 friendly.  And of course, hot off the heels of DooM for GO32 DPMI, I was able to get it to build and run using GCC 1.39 and GO32.

I know most people really won’t care, but I found it kind of interesting.  I should try to see if it’ll run on actual hardware, just as a comparison of tightly optimized Borland C++ / Assembly vs 100% pure C on DJGPP.  The best tech of 1991 for sure!

At current I just put the source up, you can git it here.

26th anniversary of Linux!

As the joke goes:

Happy 25th birthday, Linux! Here’s your f-ing cake, go ahead and compile it yourself.

So it’s always a fun time for me to push my old project Ancient Linux on Windows.  And what makes this so special?  Well it’s a cross compiler for the ancient Linux kernels, along with source to the kernels so you can easily edit, compile and run early Linux from Windows!

As always the kernels I have built and done super basic testing on are:

  • linux-0.10
  • linux-0.11
  • linux-0.12
  • linux-0.95c+
  • linux-0.96c
  • linux-0.97.6
  • linux-0.98.6

All of these are a.out kernels, like things were back in the old days.  You can edit stuff in notepad if you so wish, or any other editor.  A MSYS environment is included, so you can just type in ‘make’ and a kernel can be built, and it also can be tested in the included Qemu.  I’ve updated a few things, first with better environment variables, and only tested on Windows 10.  Although building a standalone linux EXE still requires a bit of work, it isn’t my goal here as this whole thing is instead geared around building kernels from source.  I included bison in this build, so more of GCC is generated on the host.  Not that I think it matters too much, although it ended up being an issue doing DooM on GCC 1.39.

So for people who want to relive the good old bad days of Linux, and want to do so from the comfort of Windows, this is your chance!


Download Ancient Linux on Windows
Download Ancient Linux on Windows

Uploaded my cross DJGPP v1 environment to sourceforge

project is here.

I also put up the source for my ‘null doom‘, for anyone who ever needs some massaged source to DooM that will compile with a C compiler, instead of needing something that can understand C++ style comments, although I know in cccp.c there is the ability to turn on cplusplus style processing.  However since I did want something that would compile without altering the compiler (too much) I thought it was best to just change all the comments.

And a quick download link to the zip file with the source & binaries.
Download crossdjgppv1
Download crossdjgppv1

Null DooM, GCC 1.39, GO32 and DPMI


phew.

DooM via DJGPP v1 GO32

Around the time of the x68000 port of DooM, I was cutting down the DooM source for a null/portable version.  I never could get it to actually run either using EMX or  DJGPP 1.03, as I couldn’t get it to link to save my life with a constant never ending battle of unresolved symbols. After a while I just used what I had towards the x68000 version and concentrated on getting it up and running, and just shelved the null/portable effort.

Later on I wanted to get it running again as part of messing with another cross compiler, as DooM isn’t a trivial application to port and verify correct operation. And in the process of trying to get the null version to build and run on Windows using TDM GCC, I wanted to make sure it at least kept compiling with GCC v1.x.

Once more again I was able to compile individual files but unable to link.  But this time, I just looked at the diffs for binutils, I thought it should be somewhat easy to get hosted on Windows.  Although versions may point to binutils 1.0, I had to use binutils-1.9.tar.gz even though the diffs are against Mar 24 1991, and the source for 1.9 is dated April 17 1991.

My first effort gave me a linker that would happily link, but go32 would either refuse to run the executable, or just crash.  I was going to give up again, but I found mention in another file that DJGPP actually uses the linker from G++, the C++ compiler which was a separate thing in the late ’80s and early’90’s.  This time it worked, and I could link a trivial hello world style application!

Now that I finally had a cross linker actually working, I didn’t want to compile under emulation, so looking at the other diffs, they didn’t look too extensive. I went ahead ,and took DJGPP v1.06 and patched up the compiler & assembler to get a full cross toolchain.  And in no time, I had a null version of DooM running on MS-DOS well at least tested on DOSBox.

This was fun, and all but I didn’t see any easy way to do fun things like hook interrupts so I could get the keyboard & clock like any good MS-DOS program.  DPMI greatly eased this kind of stuff, so looking at the DJGPP history, DJGPP v1 version 1.10 actually adds preliminary DPMI support!  And in the next version, DPMI was much more better supported, however the binary format had changed from a.out to COFF as part of the move to v1.11. I was able to take the memory, and DPMI portions from the final v1.12 libc, and manually build and run them against the v1.06 library / dev tools.

And much to my surprise, it actually worked!  At least having the wrong format didn’t have any effect on how GO32 worked for me.

So feeling lazy, I snagged some of the support code from Maraakate’s revamp of DooM, just to make sure of the timer code, and the keyboard code, and again verified that I can build with the keyboard & timer ISR and I’m able to play the v1.9 shareware & commercial levels fine.  I haven’t done a thing to clean up or update the DooM source itself against all the dozens of bugs and issues with Ultimate DooM, or other games like Chex Quest etc.

I’m sure 99% of people wouldn’t care but you can download it here:

Win32_DJGPPv1_DooM.7z
Download crossdjgppv1

Although I’m using DPMI to drive realtime events, if I looked further at the GO32 v1.06 environments I could either figure out how it operates it’s timer, or modify the extender directly to drive the PIC timer and keyboard as I need.  But overlooking that, the vintage 1991 software is more than capable of running DooM.

OS X 10.12 to Win32 MinGW cross compiler

Using GCC 4.1.2 because that is what I wanted.

Oh yes, it works!

It’sGCC 4.1.2 for MinGW on OS X.  Naturally I had some fun along the way.

      cp/cp-lang.o stub-objc.o cp/call.o cp/decl.o cp/expr.o cp/pt.o cp/typeck2.o cp/class.o cp/decl2.o cp/error.o cp/lex.o cp/parser.o cp/ptree.o cp/rtti.o cp/typeck.o cp/cvt.o cp/except.o cp/friend.o cp/init.o cp/method.o cp/search.o cp/semantics.o cp/tree.o cp/repo.o cp/dump.o cp/optimize.o cp/mangle.o cp/cp-objcp-common.o cp/name-lookup.o cp/cxx-pretty-print.o cp/cp-gimplify.o tree-mudflap.o attribs.o c-common.o c-format.o c-pragma.o c-semantics.o c-lex.o c-dump.o winnt-cxx.o c-pretty-print.o c-opts.o c-pch.o c-incpath.o cppdefault.o c-ppoutput.o c-cppbuiltin.o prefix.o c-gimplify.o tree-inline.o dummy-checksum.o main.o  libbackend.a ../libcpp/libcpp.a ../libcpp/libcpp.a ./../intl/libintl.a -liconv  ../libiberty/libiberty.a

Undefined symbols for architecture x86_64:

  “_libc_name_p”, referenced from:

      _nothrow_libfn_p in except.o

ld: symbol(s) not found for architecture x86_64

clang: error: linker command failed with exit code 1 (use -v to see invocation)

make[2]: *** [cc1plus-dummy] Error 1

make[1]: *** [all-gcc] Error 2

make: *** [all] Error 2

$

 

From stack overflow:

When gperf wasn’t installed, the compilation script ran the command anyway but generated a blank ./gcc/cp/cfns.h. Since this file was newer than the source (./gcc/cp/cfns.gperf) the makefile left it alone and never regenerated the ‘real’ file when you actually had gperf. To continue, run rm ./gcc/cp/cfns.h and try again.

to dealing with duplicate inlines exact_log2 from an include gone wrong.  Not to mention more and more headers not generating.  But in the end it actually works.  As always it feels so much faster to run on OS X than Windows.  I’m sure there is stuff out there for newer versions of GCC, but I wanted to use the older toolchain and libs for some other reason.

As always it’s on my site here: OSX_16.3.0-MinGW_GCC_4.1.2.7z but I don’t think the world at large would even care.

Just for you, lucky Spanish user, GCC 3.0.4 for Windows NT (MinGW)

From Spain!

I cannot understand why you want this, or why I’m even going to do it.  At this point in GCC history the winnt-3.5 target had been dumped in favour of going all in with Cygwin.  So yeah, this does not either clearly configure, or compile.  But a little bit of mashing files, and I have it at least compiling some assembly that can be translated into an object file that a later version of MinGW can actually compile.

All I’ve built is the gcc driver, the cpp pre-processor, and the cc1 aka C backend.

D:\proj\gcc-3.0.4\gcc>xgcc -c -v hi.c
Using builtin specs.
Configured with:
Thread model: single
gcc version 3.0.4
cc1 -lang-c -v -iprefix ../lib/gcc-lib/i386-winnt35/3.0.4/ -D__GNUC__=3 -D__GNUC_MINOR__=0 -D__GNUC_PATCHLEVEL__=4 -Dunix -DWIN32 -D_WIN32 -DWINNT -D_M_IX86=300 -D_X86_=1 -D__STDC__=0 -DALMOST_STDC -D_MSC_VER=800 -D__stdcall=__attribute__((__stdcall__)) -D__cdecl=__attribute__((__cdecl__)) -D_cdecl=__attribute__((__cdecl__)) -D__unix__ -D__WIN32__ -D_WIN32 -D__WINNT__ -D_M_IX86=300 -D_X86_=1 -D__STDC__=0 -D__ALMOST_STDC__ -D_MSC_VER=800 -D__stdcall=__attribute__((__stdcall__)) -D__cdecl=__attribute__((__cdecl__)) -D__cdecl__=__attribute__((__cdecl__)) -D__unix -D__WIN32 -D__WINNT -D__ALMOST_STDC -D__cdecl=__attribute__((__cdecl__)) -Asystem=unix -Asystem=winnt -D__NO_INLINE__ -D__STDC_HOSTED__=1 -Acpu=i386 -Amachine=i386 -Di386 -D__i386 -D__i386__ -D__tune_i386__ hi.c -quiet -dumpbase hi.c -version -o C:\Users\jason\AppData\Local\Temp\ccpflisr.s
GNU CPP version 3.0.4 (cpplib) (80386, BSD syntax)
GNU C version 3.0.4 (i386-winnt35)
compiled by GNU C version 5.1.0.
ignoring nonexistent directory "../lib/gcc-lib/i386-winnt35/3.0.4/include"
ignoring nonexistent directory "../lib/gcc-lib/i386-winnt35/3.0.4/../../../../i386-winnt35/include"
ignoring nonexistent directory "D:/pcem/building/MinGW/msys/1.0/local/include"
ignoring nonexistent directory "NONE/include"
ignoring nonexistent directory "D:/pcem/building/MinGW/msys/1.0/local/lib/gcc-lib/i386-winnt35/3.0.4/include"
ignoring nonexistent directory "D:/pcem/building/MinGW/msys/1.0/local/lib/gcc-lib/i386-winnt35/3.0.4/../../../../i386-winnt35/include"
ignoring nonexistent directory "/usr/include"
#include "..." search starts here:
End of search list.
: warning: "__STDC__" redefined
: warning: this is the location of the previous definition
: warning: "__STDC__" redefined
: warning: this is the location of the previous definition
hi.c: In function `main':
hi.c:3: warning: return type of `main' is not `int'
as --traditional-format -o hi.o C:\Users\jason\AppData\Local\Temp\ccpflisr.s

D:\proj\gcc-3.0.4\gcc>gcc hi.o -o hi

D:\proj\gcc-3.0.4\gcc>hi
Hello from GCC 3.0.4

So there you go, mysterious internet user!  Download my source dump with binaries in the tree because I’m lazy.

gcc-3.0.4-MinGW.7z