OS/2 and KVM don’t mix.

After I was able to run OS/2 2.11 on VMware with PCI drivers, I thought I’d try KVM.

KVM internal error. Suberror: 1 emulation failure EAX=00000720 EBX=00000050 ECX=fee10050 EDX=00400780 ESI=d02f004c EDI=ff3f0000 EBP=00000d88 ESP=00000d72 EIP=00006725 EFL=00013202 [-------] CPL=3 II=0 A20=1 SMM=0 HLT=0 ES =0047 00080000 00000f9f 0010f300 DPL=3 DS16 [-WA] CS =d517 1aa20000 0000672d 0000ff00 DPL=3 CS16 [CRA] SS =0017 00020000 00000fff 0000f300 DPL=3 DS16 [-WA] DS =bfcf 17f90000 0000033d 0000f300 DPL=3 DS16 [-WA] FS =0000 00000000 ffffffff 00000000 GS =bfff 17ff0000 00000fff 0000f300 DPL=3 DS16 [-WA] LDT=0028 7be57000 0000ffff 00008200 DPL=0 LDT TR =0010 ffe1f6e7 00000067 00008b00 DPL=0 TSS32-busy GDT=     7c7e5000 00001fff IDT=     ffe201e0 000003ff CR0=8001001b CR2=00080000 CR3=001b3000 CR4=00000000 DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000 DR6=00000000ffff0ff0 DR7=0000000000000400 EFER=0000000000000000 Code=ca 76 0f 8b ca eb 0b 03 7e 22 8b ca 3b cb 76 02 8b cb 2b d1 <f3> ab 0b d2 75 ed 2b c0 c3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OS/2 2.11 crashing on KVM


No go.  Also Qemu 2.1.2 on Linux didn’t fare much better.  Must be something about HPFS and raw disk images.  The funny thing is that even once a disk became corrupted, I quit Qemu, restore the disk, and start again, and it’s still behaving like it’s corrupt.  Qemu 0.15.X has been the most stable branch I’ve found to run OS/2, but it’s so obsolete now.

Time for another Cockatrice release

I’ve been busy at work, but I did get some stuff done on this over the weekend, and just wanted to push this version out while there is some momentum.

The big fixes are in SCSI to support the dynamic scatter gather buffers so you can format big (lol) disks.  Then again I only tested a 2GB disk but it’s working fine as far as I can tell.

I also hard coded SCSI id #6 as a CD-ROM.  It only reads HFS partitioned images, and only can boot from a handful of those.  From some SCSI CD emulation packages with passthru it performs just as poorly, so it’s not just me.  I tested with the ‘blessed’ Win32 build 142, with ForceASPI in a Windows XP VM with emulated SCSI CD.  There is a lot more ‘magic’ going on with the cdenable.sys driver on the Windows side, which mounts ISO’s without any hesitation.

This also includes my latest networking fixes as I moved more of the networking code to use queues, forced the 60Hz timer to hit the network card so it won’t stall anymore, and added in that timer patch, that more than doubled my LAN download speeds.

I’ve also added a simple PCAP filter as I noticed that my LAN was quite chatty, and I figured all this traffic wouldn’t be good as an emulator really shouldn’t be processing stuff it doesn’t need to.  Something like this:

(((ether dst 09:00:07:ff:ff:ff) or (ether dst ff:ff:ff:ff:ff:ff) or (ether dst fe:fd:00:00:16:48)))

09:00:07:ff:ff:ff is the AppleTalk broadcast address, ff:ff:ff:ff:ff:ff is the typical all hosts broadcast, and I’m still generating a MAC based on PID which is good enough for me.

Speed!

Feel the need for speed!

So while before downloading 124MB on my LAN took 8 minutes, now it’s about a minute.

I’ve updated the sourceforge page with source, Win32, Linux i386 and OS X (10.8) builds. I’ll add a 10.6 x86/PowerPC build later.  On the sourceforge page I also added a utilities section with a simple ISO image with various utilities to get you started, including the A/UX partitioning tool to partition & format a virtual disk, a tool to try to mount ISO’s (remember HFS has the only hope right now), QuickTime, Flash, Internet Explorer and some other stuff.

Also, thanks to Peter, it’s also available on github, so my horrific edits are open for the world to see…

I have no idea why the networking in Basilisk II keeps stalling

And it is quite frustrating.  The most I can do is about 100MB worth of AppleTalk traffic, or 1.5GB of TCP/IP then the receive function EtherReadPacket just stop being called, and then the whole thing stalls out.

I don’t really ‘like’ my solution, but it does work.  I went ahead and chained the EtherInterrupt function to the 60Hz timer to ensure it’ll fire, and it seems to be working. The good thing is now I’m getting ~200K/sec using pcap or SLiRP.  So things are faster!

Then after scanning the changelog, I found this interrupt patch, and it doubled my throughput on the network to over 400K/sec!

427K/sec via SLiRP

427K/sec via SLiRP

So now I can copy about 350MB worth of data in about 5-7 minutes, and it doesn’t stall out.

357MB worth of AppleTalk

357MB worth of AppleTalk

I can now copy hundreds of MB worth of stuff from one AT server to another.

What is also surprising is that by using Internet Explorer 4.0.1 for MacOS, I get speeds of around 1.0Mb/sec(with as high as 1.6!)

Internet Explorer 4.0.1 screaming along

Internet Explorer 4.0.1 screaming along

I know IE has always had a bum rap, but it really is a better legacy browser on MacOS.

I also merged the scsi driver’s buffer with BasiliskII’s buffer so the scatter/gather can now handle the absurd requests of 4MB++ worth of reads in one swoop.

So I started to look at the SCSI passthru on Basilisk

And personally I’ve never seen the appeal for such things, but apparently for the world of emulation accessing physical media is a big deal. Of course what I didn’t think about was rescuing old machines by re-installing the OS under emulation, or copy protection.

The first thing I looked for was a GPL project that has SCSI disk support and isn’t too complicated.  The Previous project sure fits that bill, scsi.c is not even a thousand likes, and even better it works!

The only two major hurdles I ran into is that the Mac is sending a page request of 0x30 which as far as I can find is not listed anywhere else.  I ended up just making one up as a reply to see if it mattered.

The other is that it’s scatter/gather based, so when it’s going to read or write several contiguous sectors, it’ll blast down up to 256kb worth of data to be read or written to.  The ability to know that a large operation was in progress was already in Previous, it just wasn’t set to loop.  I guess the NeXT isn’t as aggressive, or it’s SG operations are better contained in the SCSI controller.

The final hurdle was in the Apple partitioning software.  I’ve been down this road a long while ago.  But the disktools from A/UX 3.0.1 doesn’t care about vendors and will thankfully format anything.

SCSI disk files

SCSI disk files

So not as exciting as talking to a real SCSI disk, but it’s safer.  I suspect that accessing a raw NT device name ought to work  I can test that on VMWare, but the trick is finding something that can read HFS and prove it’s a good exercise.

Another ‘feature’ I put back in is the ability to disable the math coprocessor on the 68040.  It feels more stable to rely on Apple’s old emulation code, but maybe that’s me.

As always files for this are on sourceforge.

PCem

PCem v9

PCem v9

From the main page:

PCem v9 released. Changes from v8.1 :

  • New machines – IBM PCjr
  • New graphics cards – Diamond Stealth 3D 2000 (S3 ViRGE/325), S3 ViRGE/DX
  • New sound cards – Innovation SSI-2001 (using ReSID-FP)
  • CPU fixes – Windows NT now works, OS/2 2.0+ works better
  • Fixed issue with port 3DA when in blanking, DOS 6.2/V now works
  • Re-written PIT emulation
  • IRQs 8-15 now handled correctly, Civilization no longer hangs
  • Fixed vertical axis on Amstrad mouse
  • Serial fixes – fixes mouse issues on Win 3.x and OS/2
  • New Windows keyboard code – should work better with international keyboards
  • Changes to keyboard emulation – should fix stuck keys
  • Some CD-ROM fixes
  • Joystick emulation
  • Preliminary Linux port

Thanks to HalfMinute, SA1988 and Battler for contributions towards this release.

Very excellent!

Announcing Cockatrice III

Well I was shuffling files back and forth into Shoebill, and with the advent of Ethernet support, I decided I wanted to build an AppleTalk network.  This endeavor seems to have taken a life of it’s own.

So, the first thing I did was tear into minivmac, as I figured it would be the easiest to modify, as ‘mini’ is in it’s name.  But it’s more geared to LocalTalk.  From it’s readme:

It does this by converting the LocalTalk packets between SDLC frames in the virtual machine to LocalTalk Over Ethernet (LTOE) packets.  These LTOE packets will be sent out the host machines Ethernet interface and will reach any other machine on the LAN.  LTOE packets are not routable and not recognized by EtherTalk devices.

Which is pretty creative, but I want to talk to A/UX, Windows NT and Cisco routers.  So this isn’t going to work out for me.

The next other ‘big’ names in Macintosh emulation are Basilisk II and SheepShaver.  Both of which are from Christian Bauer which is a sizable download (or so I thought) and has a very confusing release versions for Windows. So I went ahead and tried BasiliskII, which only does some native networking via a TUN/TAP & bridge solution (which is really popular solution for plenty of UNIX based stuff), which personally I don’t really care for.  The Windows version does support SLiRP, but for some strange and annoying reason it always crashes when I try to download anything big.  As a matter of fact, the Windows version crashes, a lot!

While digging around for various builds of Basilisk II, I found the defunct sourceforge page, which is thankfully still up.  And there I found the 0.8 and 0.9 release source code, which weighs in at a tiny 350kb in size.  This is something I could probably dive into.  So I went ahead and tried to build it on a Debian 7 x86 VM.  And much to my surprise, after altering configure to accept GCC 4.7, and forcing it to turn X11 on (I don’t know why it kept failing to detect it), I was able to build a binary in no time.  Even better, it worked!

So the first few goals were simple, I wanted to take 0.8 and remove it’s dependency on X11,and make it use SDL 1.2.  Why not SDL 2.0?  Well 2.0 is more about 3d space, and even to render a flat framebuffer it uses streaming textures.  Which is too heavy for me, so I’m sticking with 1.2.  I took a bunch of code from SDLQuake, and after a while of bashing it around, I was able to open a window, and capture some ouput from the framebuffer.  With even more bashing around I got it to work correctly.  I did make some small tweaks though, it only supports 8bit depth.  But I’m interested in networking, so 256 colours is fine by me.  Now that i could see what I was doing, I was able to then re-compile on OS X, and I was greeted with the Mac Boot screen.  The harder part was Windows, as the system code written by Lauri Pesonen who did an excellent job of porting BasiliskII to Windows, but to say their code took 100% advantage of the Win32 API would be an understatement.. And I wanted something more pure to being SDL so I really couldn’t use much of that code.  And what code I could find it was for far later versions.  However with enough pushing I did finally get BasiliskII to boot up on Windows.  I was once more again bitten by the fact that open on Windows defaults to being in ASCII mode.

The next thing to add was SDL input for the keyboard and mouse.  And at this point googling around for an example of an input loop for SDL that is appropriate for an emulator I stumbled uppon the fact that there already was a SDL support built into the more current version of Basilisk II.  But for some strange reason I kept going ahead, and incorporated some of the code into my 0.8 branch.  And then I could finally send some keystrokes, move the mouse, and click on things!  Things were looking up!

While looking at the SDL code, I did see they also have audio support, so I went ahead and borrowed the skeleton framework from there, although the initialization didn’t work at all as BasiliskII had drifted in how it hooked into the native sound support.  So I once more again turned to SDLQuake, and I was able to initialize sound, and Even get QuickTime to play the old Quadra quicktime video, which was the first QuickTime thing I’d ever seen, back when they were still making Quadras.

So now with video and sound in place, it was finally time to tackle the networking.  At first this seemed quite easy to do, and using SIMH for inspiration I was able to quickly replace the tun/tap code with some pcap code to open the interface, send packets, and receive packets.  One more again I started on Linux, made it build on OS X, although my MacBook air doesn’t have anything I can really inject packets into so I don’t know if it actually works.  The bigger test for me was on Windows with a GNS3 network, and with a few more minor changes I was happily sending AppleTalk to both Shoebill and Windows NT.

The next thing I wanted to tackle was SLiRP support.  Ironically to bring SLiRP to Shoebill I used the SLiRP from the github of Basilisk II.  At this point I figured this would be very simple, and I could wrap up later that day.  It ended up taking me three days.  Once more again my build would crash all the time, just like the later Basilisk II builds.  Using Internet Explorer 4.0.1 would seemingly crash the whole system within seconds with faults in SLiRP’s slirp_select_fill, and slirp_select_poll functions.  Now if you don’t call these functions SLiRP doesn’t process it’s TCP state and you end up with barely functioning UDP to only SLiRP which isn’t great beyond DHCP and DNS.  First I tried semaphores which only made things worse as the nature of Basilisk II’s threaded nature just made the requests stack up deadlocking within seconds.  I tried a mutex, timed mutexes and various other locking methods insdide of SLiRP and Basilisk II to no end.  Netscape would kind of work, but IE would crash the whole thing out after a few pages. Then a better solution hit me as I was playing with the system clock on the Windows build.  There is a 60Hz timer that calls a 1Hz timer once every 60 ticks.  What if I had the clock drive SLiRP?  And to my amazement not only did that work, but it worked great until I hit another problem that I had with Shoebill (that needs to be fixed now that I found away around it here).  There is a static buffer that passes data between SLiRP’s callback when it is going to send a packet to BasiliskII and when Basilisk II then feeds the packet to MacOS.  With enough traffic it will overwrite part of itself as they are on two different threads.  Once more again I tried semaphores, which of course is the wrong tool here as if something is stacking waiting for it to unstack is just crazy, and more mutexes.  The mutexes kind of worked but performance was horrible, as in 1992 dialup speed horrible.  And I didn’t want to simulate a 1992 internet experience 100%

So the obvious solution as a queue.  I took a simple queue implementation, added the ability to peek, changed it to accept a packet structure and I was set.  Now I only needed a mutex when I queued items, and dequeued them.  But I could hold 100 packets easily.

So with all that in place I can finally download files greater than 10MB, and even with Internet Explorer!

Download

124MB in 8 minutes!

So the next was to make Pcap dynamically loaded, which for C++ is a bit of fun with __cdecl, GetProcAddress and all that fun.  But I had it working after a bit so now if the user doesn’t have WinPcap installed they don’t get an error message, and I don’t have to maintain two builds.  Nobody likes doing that kind of stuff.  Ever.

Multitasking.. Kind of.

Multitasking.. Kind of.

There is still plenty of things broken afterall I’m using an ancient version of Basilisk to base this off of. I’ve also removed a bunch of features as I wanted to make this more of a ‘core’ product with again a focus on networking.

Will this interest the majority of people? Probably not.  But for anyone who wants to actually download a file this may be somewhat useful.

Where to go from here?

Well there is still a lot of OS specific stuff in the code that I want to convert to SDL.  I’d like to build from a 100% more generic code tree rather than having private files here and there.  The CPU optimization programs that re-read GCC’s assembly output don’t do anything.  I want to try it through an older version of GCC and see if there is any difference in speed.  I also recently received the source code to vc5opti.cpp and I’d like to try that to see if it speeds up the Windows Visual C++ based build.  Long term I’d love to patch in the UAE CPU code from the newer versions that have a far more solid 68030/68881 and 68040 emulation.  The price of standing on so many tall shoulders is that when I fall off I don’t know if the CPU exceptions I see are faults in the CPU emulation, Basilisk II or just plain crashes in MacOS which was certainly not the most stablest thing once you mixed in multimedia and networking.  It was par with Windows 3.1, which honestly both of them were ‘saved’ with help from the older generation, ala BSD Unix for MacOS, and the VMS team for Windows.

So after all this I’m ready to release some binaries, and code.  Although the last thing I wanted to do is add more confusion by calling this Basillisk II v0.8.SOMETHING … A quick google search on Basilisk gave me this:

As for some reason I actually never did look up what a Basilisk was.  So seeing that this project is basically the same thing I chose Cockatrice.

The Cockatrice III source forge page is here, Windows binaries, Mac OS X binaries, and source code here.

There are plenty of bugs, and plenty of things not working, but it works well enough to do things, and that is a credit to everyone who worked on Basilisk II before me.

So Microsoft still has the MacOS Outlook for download

I was kind of surprised.  Even more so that I could get it working to my Exchange 5.5 server.

outlook on macos 8

Outlook on MacOS 8.0

Unless you have AppleTalk enabled on your server, you’ll need to setup your TCP/IP, and that also means you have to be able to resovle the exchange server by name.

If you want to use a hosts file, be sure to set the user mode to advanced in the control panel, and then setup a hosts file in the special format that looks more like a DNS zone record.

exchange.superglobalmegacorp.com A 172.18.8.50
exchange CNAME exchange.superglobalmegacorp.com
bbs CNAME bbs.superglobalmegacorp.com

Then save it somewhere like System/Control panels, point the TCP/IP panel to it, and that should do it.

For anyone who wants to try to connect to their Exchange server, you can find the client here, on their ancient ftp server.  And I suppose you could also try the one from Exchange 4.0SP2, but I didn’t bother, since this one is so new, like 1999!