Examining Windows 1.0 HELLO.C

The following is a guest post by NCommander of SoylentNews fame!

For those who’ve been long-time readers of SoylentNews, it’s not exactly a secret that I have a personal interest in retro computing and documenting the history and evolution of the Personal Computer. About three years ago, I ran a series of articles about restoring Xenix 2.2.3c, and I’m far overdue on writing a new one. For those who do programming work of any sort, you’ll also be familiar with “Hello World”, the first program most, if not all, programmers write in their careers.

A sample hello world program might look like the following:

#include <stdio.h>


int main() {
 printf("Hello world\n");
 return 0;
}

Recently, I was inspired to investigate the original HELLO.C for Windows 1.0, a 125 line behemoth that was talked about in hush tones. To that end, I recorded a video on YouTube that provides a look into the world of programming for Windows 1.0, and then testing the backward compatibility of Windows through to Windows 10.

For those less inclined to watch a video, my write-up of the experience is past the fold and an annotated version of the file is available on GitHub (https://github.com/NCommander/win1-hello-world-annotations)


Bring Out Your Dinosaurs – DOS 3.3

Before we even get into the topic of HELLO.C though, there’s a fair bit to be said about these ancient versions of Windows. Windows 1.0, like all pre-95 versions, required DOS to be pre-installed. One quirk however with this specific version of Windows is that it blows up when run on anything later than DOS 3.3. Part of this is due to an internal version check which can be worked around with SETVER. However, even if this version check is bypassed, there are supposedly known issues with running COMMAND.COM. To reduce the number of potential headaches, I decided to simply install PC-DOS 3.3, and give Windows what it wants.

You might notice I didn’t say Microsoft DOS 3.3. The reason is that DOS didn’t exist as a standalone product at the time. Instead, system builders would license the DOS OEM Adaptation Kit and create their own DOS such as Compaq DOS 3.3. Given that PC-DOS was built for IBM’s own line of PCs, it’s generally considered the most “generic” version of the pre-DOS 5.0 versions, and this version was chosen for our base. However, due to its age, it has some quirks that would disappear with the later and more common DOS versions.

PC DOS 3.3 loaded just fine in VirtualBox and — with the single 720 KiB floppy being bootable — immediately dropped me to a command prompt. Likewise, FDISK and FORMAT were available to partition the hard drive for installation. Each individual partition is limited, however, to 32 MiB. Even at the time, this was somewhat constrained and Compaq DOS was the first (to the best of my knowledge) to remove this limitation. Running FORMAT C: /S created a bootable drive, but something oft-forgotten was that IBM actually provided an installation utility known as SELECT.

SELECT’s obscurity primarily lies in its non-obvious name or usage, nor the fact that it’s actually needed to install DOS; it’s sufficient to simply copy the files to the hard disk. However, SELECT does create CONFIG.SYS and AUTOEXEC.BAT so it’s handy to use. Compared to the later DOS setup, SELECT requires a relatively arcane invocation with the target installation folder, keyboard layout, and country-code entered as arguments and simply errors out if these are incorrect. Once the correct runes are typed, SELECT formats the target drive, copies DOS, and finishes installation.

Without much fanfare, the first hurdle was crossed, and we’re off to installing Windows.

Windows 1.0 Installation/Mouse Woes

With DOS installed, it was on to Windows. Compared to the minimalist SELECT command, Windows 1.0 comes with a dedicated installer and a simple text-based interface. This bit of polish was likely due to the fact that most users would be expected to install Windows themselves instead of having it pre-installed.

Another interesting quirk was that Windows could be installed to a second floppy disk due to the rarity of hard drives of the era, something that we would see later with Microsoft C 4.0. Installation went (mostly) smoothly, although it took me two tries to get a working install due to a typo. Typing WIN brought me to the rather spartan interface of Windows 1.0.

Although functional, what was missing was mouse support. Due to its age, Windows predates the mouse as a standard piece of equipment and predates the PS/2 mouse protocol; only serial and bus mice were supported out of the box. There are two ways to solve this problem:

The first, which is what I used, involves copying MOUSE.DRV from Windows 2.0 to the Windows 1.0 installation media, and then reinstalling, selecting the “Microsoft Mouse” option from the menu. Re-installation is required because WIN.COM is statically linked as part of installation with only the necessary drivers included; there is no option to change settings afterward. The SDK documentation details the static linking process, and how to run Windows in “slow mode” for driver development, but the end result is the same. If you want to reconfigure, you need to re-install.

The second option, which I was unaware of until after producing my video is to use the PS/2 release of Windows 1.0. Like DOS of the era, Windows was licensed to OEMs who could adapt it to their individual hardware. IBM did in fact do so for their then-new PS/2 line of computers, adding in PS/2 mouse support at the time. Despite being for the PS/2 line, this version of Windows is known to run on AT-compatible machines.

Regardless, the second hurdle had been passed, and I had a working mouse. This made exploring Windows 1.0 much easier.

The Windows 1.0 Experience

If you’re interested in trying Windows 1.0, I’d recommend heading over to PCjs.org and using their browser-based emulator to play with it as it already has working mouse support and doesn’t require acquiring 35 year old software. Likewise, there are numerous write-ups about this version, but I’d be remiss if I didn’t spend at least a little time talking about it, at least from a technical level.

Compared to even the slightly later Windows 2.0, Windows 1.0 is much closer to DOSSHELL than any other version of Windows, and is essentially a graphical bolt-on to DOS although through deep magic, it is capable of cooperative multitasking. This was done entirely with software trickery as Windows pre-dates the 80286, and ran on the original 8086. COMMAND.COM could be run as a text-based application, however, most DOS applications would launch a full-screen session and take control of the UI.

This is likely why Windows 1.0 has issues on later versions of DOS as it’s likely taking control of internal structures within DOS to perform borderline magic on a processor that had no concept of memory protection.

Another oddity is that this version of Windows doesn’t actually have “windows” per say. Instead applications are tiled, with only dialogue boxes appearing as free-floating Windows. Overlapping Windows would appear in 2.0, but it’s clear from the API that they were at least planned for at some point. Most notable, the CreateWindow() function call has arguments for x and y coordinates.

My best guess is Microsoft wished to avoid the wrath of Apple who had gone on a legal warpath of any company that too-closely copied the UI of the then-new Apple Macintosh. Compared to later versions, there are also almost no included applications. The most notable applications that were included are: NOTEPAD, PAINT, WRITE, and CARDFILE.

While NOTEPAD is essentially unchanged from its modern version, Write could be best considered a stripped-down version of Word, and would remain a mainstay until Windows 95 where it was replaced with Wordpad. CARDFILE likewise was a digital Rolodex. CARDFILE remained part of the default install until Windows 3.1, and remained on the CD-ROM for 95, 98, and ME before disappearing entirely.

PAINT, on the other hand, is entirely different from the Paintbrush application that would become a mainstay. Specifically, it’s limited to monochrome graphics, and files are saved in MSP format. Part of this is due to limitations of the Windows API of the era: for drawing bitmaps to the screen, Windows provided Display Independent Bitmaps or DIBs. These had no concept of a palette and were limited to the 8 colors that Windows uses as part of the EGA palette. Color support appears to have been a late addition to Windows, and seemingly wasn’t fully realized until Windows 3.0.

Paintbrush (and the later and confusingly-named Paint) was actually a third party application created by ZSoft which had DOS and Windows 1.0 versions. ZSoft Paintbrush was very similar to what shipped in Windows 3.0 and used a bit of technical trickery to take advantage of the full EGA palette.

With that quick look completed, let’s go back to actually getting to HELLO.C, and that involved getting the SDK installed.

The Windows SDK and Microsoft C 4.0

Getting the Windows SDK setup is something of an experience. Most of Microsoft’s documentation for this era has been lost, but the OS/2 Museum has scanned copies of some of the reference binders, and the second disk in the SDK has both a README file and an installation batch file that managed to have most of the necessary information needed.

Unlike later SDK versions, it was the responsibility of the programmer to provide a compiler. Officially, Microsoft supported the following tools:

  • Microsoft Macro Assembler (MASM) 4
  • Microsoft C 4.0 (not to be confused with MSC++4, or Visual C++)
  • Microsoft Pascal 3.3

Unofficially (and unconfirmed), there were versions of Borland C that could also be used, although this was untested, and appeared to not have been documented beyond some notes on USENET. More interestingly, all the above tools were compilers for DOS, and didn’t have any specific support for Windows. Instead, a replacement linker was shipped in the SDK that could create Windows 1.0 “NE” New Executables, an executable format that would also be used on early OS/2 before being replaced by Portable (PE) and Linear Executables (LX) respectively.

For the purposes of compiling HELLO.C, Microsoft C 4.0 was installed. Like Windows, MSC could be run from floppy disk, albeit it with a lot of disk swapping. No installer is provided, instead, the surviving PDFs have several pages of COPY commands combined with edits to AUTOEXEC.BAT and CONFIG.SYS for hard drive installation. It was also at this point I installed SLED, a full screen editor as DOS 3.3 only shipped with EDLIN. EDIT wouldn’t appear until DOS 5.0

After much disk feeding and some troubleshooting, I managed to compile a quick and dirty Hello World program for DOS. One other interesting quirk of MSC 4.0 was it did not include a standalone assembler; MASM was a separate retail product at the time. With the compiler sorted, it was time for the SDK.

Fortunately, an installation script is provided. Like SELECT, it required listing out a bunch of folders, but otherwise was simple enough to use. For reasons that probably only made sense in 1985, both the script and the README file was on Disk 2, and not Disk 1. This was confirmed not to be a labeling error as the script immediately asks for Disk 1 to be inserted.

The install script copies files from four of the seven disks before returning to a command line. Disk 5 contains the debug build of Windows, which are roughly equivalent to checked builds of modern Windows. Disk 6 and 7 have sample code, including HELLO.C.

With the final hurdle passed, it wasn’t too hard to get to compiled HELLO.EXE.

Dissecting HELLO.C

I’m going to go through these at a high level, my annotated hello.c goes into much more detail on all these points.

General Notes

Now that we can build it, it’s time to take a look at what actually makes up the nuts and bolts of a 16-bit Windows application. The first major difference, simply due to age is that HELLO.C uses K&R C simply on the basis of pre-dating the ANSI C function. It’s also clear that certain conventions weren’t commonplace yet: for example, windows.h lacks inclusion guards.

NEAR and FAR pointers

long FAR PASCAL HelloWndProc(HWND, unsigned, WORD, LONG);

Oh boy, the bane of anyone coding in real mode, near and far pointers are a “feature” that many would simply like to forget. The difference is seemingly simple, a near pointer is nearly identical to a standard pointer in C, except it refers to memory within a known segment, and a far pointer is a pointer that includes the segment selector. Clear right?

Yeah, I didn’t think so. To actually understand what these are, we need to segue into the 8086’s 20-bit memory map. Internally, the 8086 was a 16-bit processor, and thus could directly address 2^16 bits of memory at a time, or 64 kilobytes in total. Various tricks were done to break the 16-bit memory barrier such as bank switching, or in the case of the 8086, segmentation.

Instead of making all 20-bits directly accessible, memory pointers are divided into a selector which forms the base of a given pointer, and an offset from that base, allowing the full address space to be mapped. In effect, the 8086 gave four independent windows into system memory through the use of the Code Segment (CS), Data Segment (DS), Stack Segment (SS), and the Extra Segment (ES).

Near pointers thus are used in cases where data or a function call is in the same segment and only contain the offset; they’re functionally identical to normal C pointers within a given segment. Far pointers include both segment and offset, and the 8086 had special opcodes for using these. Of note is the far call, which automatically pushed and popped the code segment for jumping between locations in memory. This will be relevant later.

HelloWndProc is a forward declaration for the Hello Window callback, a standard feature of Windows programming. Callback functions always had to be declared FAR as Windows would need to load the correct segment when jumping into application code from the task manager. Hence the far declaration. Windows 1.0 and 2.0, in addition, had other rules we’ll look at below.

WinMain Decleration:

int PASCAL WinMain( hInstance, hPrevInstance, lpszCmdLine, cmdShow )
HANDLE hInstance, hPrevInstance;
LPSTR lpszCmdLine;
int cmdShow;

PASCAL Calling Convention

Windows API functions are all declared as PASCAL calling convention, also known as STDCALL on modern Windows. Under normal circumstances, the C programming language has a nominal calling convention (known as CDECL) which primarily relates to how the stack is cleaned up after a function call. In CDECL-declared functions, its the responsibility of the calling function to clean the stack. This is necessary for vardiac functions (aka, functions that take a variable number of arguments) to work as the callee won’t know how many were pushed onto the stack.

The downside to CDECL is that it requires additional prologue and epilogue instructions for each and every function call, thereby slowing down execution speed and increasing disk space requirements. Conversely, PASCAL calling convention left cleanup to be performed by the called function and usually only needed a single opcode to clean the stack at function end. It was likely due to execution and disk space concerns that Windows standardized on this convention (and in fact still uses it on 32-bit Windows.

hPrevInstance

if (!hPrevInstance) {
/* Call initialization procedure if this is the first instance */
if (!HelloInit( hInstance ))
return FALSE;
} else {
/* Copy data from previous instance */
GetInstanceData( hPrevInstance, (PSTR)szAppName, 10 );
GetInstanceData( hPrevInstance, (PSTR)szAbout, 10 );
GetInstanceData( hPrevInstance, (PSTR)szMessage, 15 );
GetInstanceData( hPrevInstance, (PSTR)&MessageLength, sizeof(int) );
}

hPrevInstance has been a vestigial organ in modern Windows for decades. It’s set to NULL on program start, and has no purpose in Win32. Of course, that doesn’t mean it was always meaningless. Applications on 16-bit Windows existed in a general soup of shared address space. Furthermore, Windows didn’t immediately reclaim memory that was marked unused. Applications thus could have pieces of themselves remain resident beyond the lifespan of the application.

hPrevInstance was a pointer to these previous instances. If an application still happened to have its resources registered to the Windows Resource Manager, it could reclaim them instead of having to load them fresh from disk. hPrevInstance was set to NULL if no previous instance was loaded, thereby instructing the application to reload everything it needs. Resources are registered with a global key so trying to register the same resource twice would lead to an initialization failure.

I’ve also gotten the impression that resources could be shared across applications although I haven’t explicitly confirmed this.

Local/Global Memory Allocations

NOTE: Mostly cribbled off Raymond Chen’s blog, a great read for why Windows works the way it does.

pHelloClass = (PWNDCLASS)LocalAlloc( LPTR, sizeof(WNDCLASS) );
LocalFree( (HANDLE)pHelloClass );

Another concept that’s essentially gone is that memory allocations were classified as either local to an application or global. Due to the segmented architecture, applications have multiple heaps: a local heap that is initialized with the program and exists in the local data segment, and a global heap which requires a far pointer to make access to and from.

Every executable and DLL got their own local heaps, but global heaps could be shared across process boundaries, and as best I can tell, weren’t automatically deallocated when a process ended. HEAPWALK could be used to see who allocated what and find leaks in the address space. It could also be combined with SHAKER which rearranged blocks of memories in an attempt to shake loose bugs. This is similar to more modern-day tools like valgrind on Linux, or Microsoft’s Application Testing tools.

MakeProcInstance

lpprocAbout = MakeProcInstance( (FARPROC)About, hInstance );

Oh boy, this is a real stinker and an entirely unnecessary one at that. MakeProcInstance didn’t even make it to Windows 3.1 and its entire existence is because Microsoft forgot details of their own operating environment. To explain, we’re going to need to dig a bit deeper into segmented mode programming.

MakeProcInstance’s purpose was to register a function suitable as a callback. Only functions that have been marked with MPI or declared as an EXPORT in the module file can be safely called across process boundaries. The reason for this is that Windows needs to register the Code Segment and Data Segment to a global store to make function calls safely. Remember, each application had its own local heap which lived in its own selector in DS.

In real mode, doing a CALL FAR to jump to a far pointer automatically push and popped the code segment as needed, but the data segment was left unchanged. As such, a mechanism was required to store the additional information needed to find the local heap. So far, this is sounding relatively reasonable.

The problem is that 16-bit Windows has this as an invariant: DS = SS …

If you’re a real mode programmer, that might make it clear where I’m going with this. The Stack Segment selector is used to denote where in memory the stack is living. SS also got pushed to the stack during a function call across process boundaries along with the previous SP. You might begin to see why MakeProcInstance becomes entirely unnecessary.

Instead of needing a global registration system for function calls, an application could just look at the stack base pointer (bp) and retrieve the previous SS from there. Since SS = DS, the previous data segment was in fact saved and no registration is required, just a change to how Windows handles function epilogs and prologs. This was actually found by a third party, and a tool FixDS was released by Michael Geary that rewrote function code to do what I just described. Microsoft eventually incorporated his fix directly into Windows, and MakeProcInstance disappeared as a necessity.

Other Oddities

From Raymond Chen’s blog and other sources, one interesting aspect of 16-bit Windows was it was actually designed with the possibility that applications would have their own address space, and there was talk that Windows would be ported to run on top of XENIX, Microsoft’s UNIX-based operating system. It’s unclear if OS/2’s Presentation Manager shared code with 16-bit Windows although several design aspects and API names were closely linked together.

From the design of 16-bit Windows and playing with it, what’s clear is this was actually future-proofing for Protected Mode on the 80286, sometimes known as segmented protection mode. On 286’s Protected Mode, while the processor was 32-bit, the memory address space was still segmented into 64-kilobyte windows. The primary difference was that the segment selectors became logical instead of physical addresses.

Had the 80286 actually succeeded, 32-bit Windows would have been essentially identical to 16-bit Windows due to how this processor worked. In truth, separate address spaces would have to wait for the 80386 and Windows NT to see the light of day, and this potential ability was never used. The 80386 both removed the 64-kilobyte limit and introduced a flat address space through paging which brought the x86 processor more inline with other architectures.

Backwards Compatibility on Windows 3.1

While Microsoft’s backward compatibility is a thing of legend, in truth, it didn’t actually start existing until Windows 3.1 and later. Since Windows 1.0 and 2.0 applications ran in real mode, they could directly manipulate the hardware and perform operations that would crash under Protected Mode.

Microsoft originally released Windows 286, and 386 to add support for the 80286 and 80386, functionality that would be merged together in Windows 3.0 as Standard Mode, and 386 Enhanced Mode along with legacy “Real Mode” support. Due to running parts of the operating system in Protected Mode, many of the tricks applications could perform would cause a General Protection Fault and simply fail. This wasn’t seen as a problem as early versions of Windows were not popular, and Microsoft actually dropped support for 1.x and 2.x applications in Windows 95.

Windows for Workgroups was installed in a fresh virtual machine, and HELLO.EXE, plus two more example applications, CARDFILE and FONTTEST were copied with it. Upon loading, Windows did not disappoint throwing up a compatibility warning right at the get-go.

Accepting the warning showing that all three applications ran fine, albeit it with a broken resolution due to 0,0 being passed into CreateWindow().

However, there’s a bit more to explore here. The Windows 3.1 SDK included a utility known as MARK. MARK was used, as the name suggests, to mark legacy applications as being OK to run under Protected Mode. It also could enable the use of TrueType fonts, a feature introduced back in Windows 3.0.

The effect is clear, HELLO.EXE now renders in TrueType fonts. The reason TrueType fonts are not immediately enabled can be see in FONTTEST, where the system typeface now overruns several dialog fields.

The question now was, can we go further?

35 Years Later …

As previously noted, Windows 95 dropped support for 1.x and 2.x binaries. The same however was not true for Windows NT, which modern versions of Windows are based upon. However, running 16-bit applications is complicated by the fact that NTVDM is not available on 64-bit installations. As such, a fresh copy of Windows 10 32-bit was installed.

Some pain was suffered convincing Windows that I didn’t want to use a Microsoft account to sign in. Inserting the same floppy disk as used in the previous test, I double-clicked HELLO and Feature Installer popped up asking to install NTVDM. After letting NTVDM install, a second attempt shows, yes, it is possible to run Windows 1.x applications on Windows 10.

FONTTEST also worked without issue, although the TrueType fonts from Windows 3.1 had disappeared. CARDFILE loaded but immediately died with an initialization error. I did try debugging the issue and found WinDbg at least has partial support for working with these ancient binaries, although the story of why CARDFILE dies will have to wait for another day.

In Closing …

I do hope you enjoyed this look at ancient Windows and HELLO.C. I’m happy to answer questions, and the next topic I’m likely going to cover is a more in-depth look at the differences between Windows 3.1 and Windows for Workgroups combined with demonstrating how networking worked in those versions.

Any feedback on either the article, or the video is welcome to help me improve my content in the future.

Until next time,

73 de NCommander

Compiling Microsoft Word 1.1a for Windows

A while back, Microsoft had famously released the source code to Word for Windows 1.1a (and OS/2 as well!), to some fanfare.

People were excited, but then kind of dismayed as they couldn’t really do much with it.  Oddly enough the source code release really didn’t have any notes on how to build it, although everything needed is included.  I went looking for information on how to build Word to see why it keeps doing weird things on WineVDM, and I came across this thread on betaarchive: 

https://www.betaarchive.com/forum/viewtopic.php?t=31096

Special props to yksoft1 for getting it to build in the first place, and Ringding for noticing that the OS/2 supplied compiler binaries can be re-bound to run under MS-DOS using a MS-DOS Extender.

So I went ahead and fired up Qemu and within an hour I had done it!

Word 1.1a compiled and on Windows 2.11

Well this is great fun, and all, but there isn’t a heck of a lof of people with Windows 2.x around anymore.  And of course Word 1.1a really wanted to have 2.11 or higher.  It has some hooks for what would be Windows 3.0 although I think it was much more.  Although it certainly doesn’t want to run (unmodified) under debug release 1.14.

So now that the world has gone beyond Win16 OS’s what can you do?

Well the tip of  WineVDM will run it!

Word 1.1a on Windows 10 using WineVDM

So now there is some new life for this old word processor.

Another fun thing in Word 1.1a is that it has an early implementation of MDI letting you view and work with several documents at once.  Naturally you would need a massive monitor, which we all have today.  Although people tend to just launch more than one copy of Word to accomplish this.

Early MDI

So now on my 64bit machine I can not only play with the source to Word, but I can run it at unimaginable resolutions on my modern machine!

UX lessons from the Magic Screensaver aka After Dark

I found this kind of interesting, a breakdown from the original guy behind the once popular After Dark screen saver.

As it started as an experiment on Windows 2, it became a product on it’s own, and launched an entire industry, along with being copied by every major OS vendor.  In the 90’s having a screen saver was key, just as having simple games like solitaire, especially a broken shuffle one where the user wins most of the time led to Windows being heavily favored in the work space.

Magic Screen Saver for Windows 2

So for the heck of it, I figured I’d check it out, and as always thanks to Jason Scott, there is a copy of 1.02 on cd.textfiles.com And as reported it’s basically the ‘mystify your mind’ screen saver.

Magic in action

The runaway hit Magic Screensaver became After Dark, which then had several licensed addons like the Simpsons, Star Wars etc.  Back then themes for Windows were popular along with sound effects.  A lot of the functionality is still in Windows, although most people prefer that their machines are silent, only making audible alerts if there really is something wrong.  But back in the day a ‘multimedia desktop’ was a $5,000 noise maker, and not many offices were impressed.  Which of course gave rise to the ‘office sound card’

All Business and no fun!

Naturally under Windows there were virtual device drivers to emulate a sound blaster, as people still wanted to game with this cheaper ‘business audio’ card, although with the rise of Windows 95/Direct X gaming under Windows finally became a thing making Sound Blaster compatibility a thing of the past.

But going back to After Dark, they made a fatal error of teaming up with Berkeley Systems, who eventually started to make their own releases pushing the original team out of their own product.

After Dark 1.0 and the infamous flying toasters.

The toasters became focal in a few lawsuits, namely the Jefferson Airplane album, although it was dismissed as the artwork for the album had not been trademarked!  And they were able to force the Opus ‘n Bill screen saver where Opus shoots the toasters.  Late they changed the toasters to have propellers to avoid being too similar.

Opus shooting a flying toaster

Oddly stuff like screen savers too have largely fallen out of fashion with the rise of power saving monitors that just turn themselves off either from a lack of new images, or a signal from the OS.

One of those weird legacy things that in today’s world really doesn’t have that much meaning, but a scant 20 years ago was a major industry.

Windows 3.0 Debug Release 1.14

Well from popular request I finally got around to loading this up.  I went ahead with my favourite retro emulator, PCem for this, as it can nicely emulate an EGA display, unlike most emulators which do VGA, however when it comes to older versions of Microsoft products they really can detect the difference between EGA and VGA.

So, to start off, I downloaded from the project page, this version of PCem, compiled it, and installed MS-DOS 4.01 , from April of 1989.  The Windows 3.0 Debug Release 1.14 itself is dated from February 22nd, 1989.  Which I figured is close enough to the time period.  I’m using the 486SX2/50 because I’m too impatient for the 386 speeds, but it does work fine on 386 or higher emulators.  It does NOT work with any 286 emulation. I’m also using the HIMEM.SYS from MS-DOS 4.01 vs the one with the Windows 3.0 (Alpha? Beta? Technical Preview?) since it is slightly newer.

There is no setup program per say, rather it just xcopies all the files to a directory, and from there you run ‘d.bat’ and away you go.  This version is hard coded to an EGA display, which again is the reason I went with PCem.  Once you start it up, you are greeted with:

Win

Windows v3.0 Debug Release 1.14

And it identifies itself as Windows Version 2.1

w

Look at all the memory!

And first thing to notice is that on my setup with 8MB of ram, I have over 6MB of RAM free.  Compare this to regular Windows 2.1 which gives me 399Kb of ram in my current setup.

Windows 2.1 running in real mode

Windows 2.1 running in real mode

And with Windows/386 Version 2.1 it provides 383Kb of real memory, along with 6.7MB of EMS memory, as the Windows/386 Hypervisor includes EMS emulation.

Windows/386 memory

Windows/386 memory

Of course the major limitation of Windows 2 is that it runs in real mode, or in the case of Windows/386 an 8086VM.  As I mentioned a while back in a post about Windows 3.0, This was game changing.

As now with Windows running in protected mode, all the memory in my PC is available to Windows, and I am using MS-DOS, with nothing special.

Besides the limitation of being EGA only, the Debug version of 3.0 is that there is no support for MS-DOS applications, as WINOLDAP.MOD is missing.

NO MS-DOS for you!

NO MS-DOS for you!

This is clearly an interim build of Windows 3.0 as mentioned in Murray Sargent’s MSDN blog Saving Windows from the OS/2 Bulldozer.  As mentioned from the article they began their work in the summer of 1988, so considering this is early 1989 it shows just how much progress they had made in getting Windows 2 to run in protected mode.  Along with Larry Osterman’s MSDN blog post Farewell to one of the great ones, which details how the Windows 3.0 skunkworks project was writing the new improved 386 hypervisor, and how Windows 3.0 got the green light, and changed the direction of not only Microsoft but the entire software industry.

I’ve been able to run most of the Windows 2.1 applets, however I’ve not been able to run Excel 2, or Word 1.  I suspect at this point that  only small memory model stuff from Windows 1 or 2 is capable of running.  Although at the same time, when 3.0 did ship, you really needed updated versions of Word 2 and Excel 3 to operate correctly.

Windows 3.0 Debug Release 1.14

Windows 3.0 Debug Release 1.14 on a 12MB system

The applets from Windows 2.1 seem to work a LOT better than the one from Windows/386 2.1 if that helps any.

This is an interesting peek at an exceptionally early build of Microsoft Windows.

Tetris for the IBM PC

Well for some reason I was interested in Tetris (Тетрис), and wanted to find an early version.  Looking around I did manage to find some background by Vadim Gerasimov, on the whole origin of Tetris.  What I never realized is that the first version was written for a Soviet PDP-11 clone, then ported to the IBM PC using Turbo Pascal! Or that it was all done in text mode!  The thought at the time is that every PC could run 40 colum mode, and thus would run Tetris.

Along the way I did manage to find some other early Russian artifacts for the IBM PC, namely MS-DOS 4.01 which not only has its own site, but has an excellent view into the history of localizing MS-DOS, and what the culture was like at the time.  There is even a promo video in Russian of course..

And I did come across a ‘Перевод’ of Windows 2.1 done in 1990, but no luck on Windows 3.0 ..  I wonder if they ever had OS/2 1.x ..?  Which speaking of non english versions of OS/2 1.x seem non existent, but I did find reference to there being a release in Japan, but naturally not even a screen shot.. I did find one rather harsh review of Windows/286 2.1 (Pусский), but seeing as far as I can tell there was no Excel 2 or Word 1 for Windows in Russian it would have been pointless running it back then.. Unless you had the 386 version!

So I figured, I’d mash in as much of the Russian bits into Windows/386, add in Tetris, and include some Amiga MOD files for the music (yes, besides being text based, there was *NO* music in the original tetris!  The Adlib! didn’t exist back then).  I’ve used the excellent 8bitboy to play the music.. You can mute if if you so wish, or skip around to various tracks…

Tetris on Windows/386

So while not all that ‘authentic’ it’s close enough I think…

Enjoy!

BBS’ing with Windows/386 & Windows 3.0 under Qemu or how I learned to love rlfossil

A while back I had seen this fantastic site, “Hates the internet” with a great write up on setting up a BBS on Qemu. In retrospect it did inspire me a bit later to get my BBS going with Qemu, but I chose to use OS/2 once I found out about SIO’s vmodem feature.

HTI (Hates the internet) chose this program called rlfossil, which is for MS-DOS..

RLFOSSIL is an implementation of multi-line serial port driver corresponding to the Fido/Opus/Seadog level 5 specification and a simple HAYES-compatible modem emulator. It allows applications usually worked through BBS’s to run on the Internet, or in IP-based local net.er, and rlogin and telnet emulation using IP services numbers 513 & 23. RLFOSSIL allows combined work with other FOSSIL drivers (X00,BNU etc.).

So, I thought between that, and all the Windows/386 excitement I’d try for something even more insane. How about running a multiline BBS on Windows?

In the same effort, I was going to use Qemu 0.14.1, with MS-DOS 4.01 (the first version I could find that came with share.exe), and Windows/386 2.11. The installation of MS-DOS 4.01 worked fine on an 80MB disk image, thankfully it was one of the things that DOS 4 could do better than 3 is large disk images… Yes, I know 3.31 could as well, but it didn’t come with share so it was out.  One strange thing after install was this message…

It is kind of foreboding that DOS is warning me that because of my “large” disk I better run share. Since I plan on having a multi node BBS all in one computer, I need to run share anyways.

The next exciting part was installing Windows/386 2.11. The installation went pretty smooth, and with Qemu the mouse worked fine.  So far, so good.  I couldn’t use himem.sys that comes with Windows/386, nor could I use the himem.sys that comes with MS-DOS as the Windows/386 version complains that that A20 line is already active (?) and the MS-DOS one has Windows complaining that the HMA is already in use. Sadly, then my conventional memory footprint will be unsatisfactory, but I don’t see any way around it.

The next part is configuring rlfossil. rlfossil needs a driver to talk to the network card, and you can find them on crynwr, namely the ‘other‘ packet archive, which contains NE2000 drivers.  Keeping with HTI, I’m going to use the NE2000 and configure Qemu with the PCI NE2000 driver.

Packet drivers are loaded from the command line something like this:

ne2000 0x60 11 0xc100

This loads the driver on software interrupt 0x60, and by default the PCI NE2000 is configured for IRQ 11, port 0xc100.  Qemu 1.6.0 changed the PCI NE2000 to use port 0xc000 for what it is worth..

So keeping with the HTI tradition, I’m going to put my packet driver (ne2000.com) and unpack the rlfossil archive in c:\packet. The next thing to do is configure rlfossile which uses the wattcp configuration file.  Since I’m going to use the usermode NAT and a redirect, I configure my VM like this:

Wattcp.cfg

Address:10.0.2.15
Netmask:255.255.255.0
Gateway:10.0.2.2
DNS: 10.0.2.3

With that all in place now it’s time to configure the config.sys/autoexec.bat.  Some things are going to be different from a normal install because we plan to run a BBS, and multiple instances of it!

So my config.sys looks like:

FILES=96
STACKS=0,0
DEVICE=C:\DOS\ANSI.SYS
SHELL=C:\COMMAND.COM /P /E:768

And my autoexec.bat is like this:

PATH C:\WIN386;C:\DOS
PROMPT $P$G
SHARE
SET TEMP=C:\TEMP
CD \PACKET
NE2000 0x60 11 0xC100
RLFOSSIL 0 4 WIN386

And of course launching Qemu I do it like this:

qemu.exe -L pc-bios -m 16 -net nic,model=ne2k_pci -net user-redir tcp:23::23 -hda telegard.qcow2

This configures the VM for 16MB of ram (which would have cost a FORTUNE back then), the PCI NE2000, and it’ll redirect telnet from my host machine into the VM.

And just like HTI, I went with telegard, because it supports fossil based ports.

Well that sure was a *LOT* of work, and surprisingly testing it with a single node, actually works.  And you can bring up a few other MS-DOS prompts and it’ll work fine. But if you launch the second node…

Disaster struck.  So needless to say, while Windows/386 was pretty slick for the day it just couldn’t measure up.  So I figured for the hell of it, I’d try Windows 3.0 Â I mean I would have imagined that Windows 3.0 most certainly could NOT handle this kind of challenge.

So with some disks shuffled, I fired it up and..

Two node telegard under Windows 3.0

It actually worked!  So with a LOT of chaos going on I managed to get Trade Wars 2002 running, although I couldn’t figure out how to automatically figure out the node.. Hell the whole door configuration thing is.. bizarre. Synchronet really kicks ass in regards to easy of configuration.

Running TW2002, two copies

And using PIF’s to configure each node for some easy of launching, and some reduced memory, I could easily run all four nodes that rlfossil can support.

Four Nodes!

I have to admit, Windows 3.0 really is impressive considering all the UAE’s and how generally crappy we thought it was at the time.  I’m sure even emulated having a multiple Ghz cpu helps quite a bit.

460KB free!

And look at all that memory.. I guess it’s pretty impressive it even works.  Since Windows anything throttles the CPU at 100% I’m not going to put this online…. Although at the same time combined with an CPU idle program (is there a Windows 3.0 idle vxd?) it sits ok, but who wants a single user system in 2011?