
-- --

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpreting CAI
scripts on the UNIX† operating system, and a set of scripts that provide a computerized
introduction to the system.

Six current scripts cover basic commands and file handling, the editor, additional
file handling commands, the eqn program for mathematical typing, the ‘‘-ms’’ package
of formatting macros, and an introduction to the C programming language. These scripts
now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire basic
UNIX skills. Most usage involves the first two scripts, an introduction to UNIX files and
commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in
CPU utilization, and much faster in perceived time because of better overlap of comput-
ing and printing. It also requires less file space than the first version. Many of the
lessons have been revised; new material has been added to reflect changes and enhance-
ments in UNIX itself. Script-writing is also easier because of revisions to the script lan-
guage.

January 30, 1979

†UNIX is a registered trademark of The Open Group.

-- --

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should not contain
long pieces of explanation; they should instead frequently ask the student to do some task. So teaching is
always by example: the typical script fragment shows a small example of some technique and then asks the
user to either repeat that example or produce a variation on it. All are intended to be easy enough that most
students will get most questions right, reinforcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks for
the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might say

How many files are there in the current directory? Type ‘‘answer N’’, where N is the number of files.

The student is expected to respond (perhaps after experimenting) with

answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17) is
difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the input or
output are monitored, and the student types ready when the task is done. Figure 1 shows a sample dialog
that illustrates the last of these, using two lessons about the cat (concatenate, i.e., print) command taken
from early in the script that teaches file handling. Most learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the lesson number
that has just been completed, permitting the student to restart the script after that lesson. If the answer is
wrong, the student is offered a chance to repeat the lesson. The ‘‘speed’’ rating of the student (explained in
section 5) is given after the lesson number when the lesson is completed successfully; it is printed only for
the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘understands’’ what he
or she is doing; accordingly, the current learn scripts only measure performance, not comprehension. If the
student can perform a given task, that is deemed to be ‘‘learning.’’1

The main point of using the computer is that what the student does is checked for correctness imme-
diately. Unlike many CAI scripts, however, these scripts provide few facilities for dealing with wrong
answers. In practice, if most of the answers are not right the script is a failure; the universal solution to stu-
dent error is to provide a new, easier script. Anticipating possible wrong answers is an endless job, and it is
really easier as well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken into
sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

To avoid boring the faster students, however, an effort is made in the files and editor scripts to pro-
vide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk and
speed of a typical tutorial manual and should be adequate for review and for well-prepared students. The

-- --

- 2 -

Figure 1: Sample dialog from basic files script

(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
$ cat food
this is the file
named food.

$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print it. Note the difference between
"ls", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President
cat: can’t open President
$ ready

Sorry, that’s not right. Do you want to try again? yes
Try the problem again.
$ ls
.ocopy
X1
roosevelt
$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"....

next track is intended for most users and is roughly twice as long. Typically, for example, the fast track
might present an idea and ask for a variation on the example shown; the normal track will first ask the stu-
dent to repeat the example that was shown before attempting a variation. The third and slowest track,
which is often three or four times the length of the fast track, is intended to be adequate for anyone. (The
lessons of Figure 1 are from the third track.) The multiple tracks also mean that a student repeating a
course is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up and

-- --

- 3 -

try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers the
student has given for the last few lessons, the program may switch tracks. The driver is actually capable of
following an arbitrary directed graph of lesson sequences, as discussed in section 5. Some more structured
arrangement, however, is used in all current scripts to aid the script writer in organizing the material into
lessons. It is sufficiently difficult to write lessons that the three-track theory is not followed very closely
except in the files and editor scripts. Accordingly, in some cases, the fast track is produced merely by skip-
ping lessons from the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material as a work-
book is not the selection of tracks, but actual hands-on experience. Learning by doing is much more effec-
tive than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let the
student proceed unless it received correct answers to the questions it set and it would not tell a student the
right answer. This somewhat Draconian approach has been moderated in version 2. Lessons are sometimes
badly worded or even just plain wrong; in such cases, the student has no recourse. But if a student is sim-
ply unable to complete one lesson, that should not prevent access to the rest. Accordingly, the current ver-
sion of learn allows the student to skip a lesson that he cannot pass; a ‘‘no’’ answer to the ‘‘Do you want to
try again?’’ question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu-
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students may
object to not understanding what they are doing; and the procedure of smashing everything into small
pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.’’ Since writing CAI scripts is consid-
erably more tedious than ordinary manuals, however, it is safe to assume that there will always be alterna-
tives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4 pages it would not be sur-
prising to have a tutorial manual of 20 pages and a (multi-track) script of 100 pages. Thus the reference
manual will exist long before the scripts.

2. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of the
potential complexity of the possible directed graph is employed, since care must be taken in lesson con-
struction to see that every necessary fact is presented in every possible path through the units. In addition,
it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For example,
before the student is allowed to proceed through the editor script the script verifies that the student under-
stands files and is able to type. It is felt that the sooner lack of student preparation is detected, the easier it
will be on the student. Anyone proceeding through the scripts should be getting mostly correct answers;
otherwise, the system will be unsatisfactory both because the wrong habits are being learned and because
the scripts make little effort to deal with wrong answers. Unprepared students should not be encouraged to
continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried. In
particular, the student must know how to connect to a UNIX† system, set the terminal properly, log in, and
execute simple commands (e.g., learn itself). In addition, the character erase and line kill conventions (#
and @) should be known. It is hard to see how this much could be taught by computer-aided instruction,
since a student who does not know these basic skills will not be able to run the learning program. A brief
description on paper is provided (see Appendix A), although assistance will be needed for the first few min-
utes. This assistance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and teaches
the student about the ls , cat , mv , rm , cp and diff commands. It also deals with the abbreviation characters
*, ?, and [] in file names. It does not cover pipes or I/O redirection, nor does it present the many options on

†UNIX is a registered trademark of The Open Group.

-- --

- 4 -

the ls command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are
review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages typed at
the student to begin each lesson total 4,476 words. The average lesson thus begins with a 60-word mes-
sage. In general, the fast track lessons have somewhat longer introductions, and the slow tracks somewhat
shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed , a sophisticated editor using
regular expressions for searching.2 All editor features except encryption, mark names and ‘;’ in addressing
are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review lesson. It is supple-
mented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is 2,572 words
long. The ed tutorial3 is 6,138 words long. The fast track through the ed script is 7,407 words of explana-
tory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson is thus also
about 60 words; the largest is 171 words and the smallest 10. The original ed script represents about three
man-weeks of effort.

The advanced file handling script deals with ls options, I/O diversion, pipes, and supporting programs
like pr , wc , tail , spell and grep . (The basic file handling script is a prerequisite.) It is not as refined as the
first two scripts; this is reflected at least partly in the fact that it provides much less of a full three-track
sequence than they do. On the other hand, since it is perceived as ‘‘advanced,’’ it is hoped that the student
will have somewhat more sophistication and be better able to cope with it at a reasonably high level of per-
formance.

A fourth script covers the eqn language for typing mathematics. This script must be run on a termi-
nal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or the
nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: of 76 lessons, only 17 are
in the second track and 2 in the third track. Most of these provide additional practice for students who are
having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future. Further-
more, the linear style of a single learn script is somewhat inappropriate for the macros, since the macro
package is composed of many independent features, and few users need all of them. It would be better to
have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but that
document has since become obsolete. The current script has been partially converted to follow the order of
presentation in The C Programming Language,4 but this job is not complete. The C script was never
intended to teach C; rather it is supposed to be a series of exercises for which the computer provides check-
ing and (upon success) a suggested solution.

This combination of scripts covers much of the material which any UNIX user will need to know to
make effective use of the system. With enlargement of the advanced files course to include more on the
command interpreter, there will be a relatively complete introduction to UNIX available via learn. Although
we make no pretense that learn will replace other instructional materials, it should provide a useful supple-
ment to existing tutorials and reference manuals.

3. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two
scripts, so these are more thoroughly debugged and polished. As a (random) sample of user experience, the
learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period. About
3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files. The passing rate is about
80%, that is, about 4 lessons are passed for every one failed. There have been 86 distinct users of the files
script, and 58 of the editor. On our system at Murray Hill, there have been nearly 2000 lessons over two
weeks that include Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone doing

-- --

- 5 -

one or two lessons and then logging out, as do instances of someone pausing in a script for twenty minutes
or more. In the earlier version of learn , the average session in the files course took 32 minutes and covered
23 lessons. The distribution is quite broad and skewed, however; the longest session was 130 minutes and
there were five sessions shorter than five minutes. The average lesson took about 80 seconds. These num-
bers are roughly typical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds
per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of pro-
cessor time per lesson, and a system expert typing quickly took 15 seconds of real time per lesson. A
novice would probably take at least a minute. Thus a UNIX system could support ten students working
simultaneously with some spare capacity.

4. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer to capture
student responses and their effects, and simplifies the job of passing control to and recovering control from
the student. This section describes the operation and usage of the driver program, and indicates what is
required to produce a new script. Readers only interested in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib) con-
taining the script data. Within this directory are subdirectories, one for each subject in which a course is
available, one for logging (named log), and one in which user sub-directories are created (named play).
The subject directory contains master copies of all lessons, plus any supporting material for that subject. In
a given subdirectory, each lesson is a single text file. Lessons are usually named systematically; the file that
contains lesson n is called Ln .

Figure 2: Directory structure for learn

lib

play
student1

files for student1...
student2

files for student2...

files
L0.1a lessons for files course
L0.1b
...

editor
...

(other courses)

log

When learn is executed, it makes a private directory for the user to work in, within the learn portion
of the file system. A fresh copy of all the files used in each lesson (mostly data for the student to operate
upon) is made each time a student starts a lesson, so the script writer may assume that everything is reini-
tialized each time a lesson is entered. The student directory is deleted after each session; any permanent
records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

-- --

- 6 -

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether the
answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor-
mance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for each
lesson, learn reads the script for the lesson and processes it a line at a time. The lines in the script are: (1)
commands to the script interpreter to print something, to create a files, to test something, etc.; (2) text to be
printed or put in a file; (3) other lines, which are sent to the shell to be executed. One line in each lesson
turns control over to the user; the user can run any UNIX commands. The user mode terminates when the
user types yes , no , ready , or answer . At this point, the user’s work is tested; if the lesson is passed, a new
lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print it. Note the difference between
"ls", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt
this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail -3 .ocopy >X1
#cmp X1 roosevelt
#log
#next
3.2b 2

Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

prints the contents of file ; it is the same as cat file but has less overhead. Both forms of #print have the
added property that if a lesson is failed, the #print will not be executed the second time through; this avoids
annoying the student by repeating the preamble to a lesson.

-- --

- 7 -

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for cre-
ating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user mode
is terminated when the student types one of yes , no , ready or answer . At that time, the driver resumes
interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets the script
writer interrogate the student’s responses upon regaining control.

#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy.
This lets the script writer interrogate the effect of what the student typed, which true believers in the perfor-
mance theory of learning usually prefer to the student’s actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter (the ‘‘shell’’)
one line at a time. This won’t do if, for example, a sequence of editor commands is provided, since the
input to the editor must be handed to the editor, not to the shell. Accordingly, the material between #pipe
and #unpipe commands is fed continuously through a pipe so that such sequences work. If copyout is also
desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp file1 file2

is an in-line implementation of cmp , which compares two files for identity.

#match stuff

The last line of the student’s input is compared to stuff , and the success or fail status is set according to it.
Extraneous things like the word answer are stripped before the comparison is made. There may be several
#match lines; this provides a convenient mechanism for handling multiple ‘‘right’ ’ answers. Any text up to
a # on subsequent lines after a successful #match is printed; this is illustrated in Figure 4, another sample
lesson.

#bad stuff

This is similar to #match , except that it corresponds to specific failure answers; this can be used to produce
hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’’ yes , no , ready , or answer , the driver terminates the
#user command, and evaluation of the student’s work can begin. This can be done either by the built-in
commands above, such as #match and #cmp , or by status returned by normal UNIX commands, typically
grep and test . The last command should return status true (0) if the task was done successfully and false
(non-zero) otherwise; this status return tells the driver whether or not the student has successfully passed
the lesson.

Performance can be logged:

#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The command

-- --

- 8 -

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match m$
#match .m$
"m$" is easier.
#log
#next
63.1d 10

#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the nor-
mal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A typical
set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units, 25.2a
for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each session
with a student; the rating is increased by one each tiee the student gets a lesson right and decreased by four
each time the student gets a lesson wrong. Thus the driver tries to maintain a devel such that the users get
80% right answers. The maximum rating is limited to 10 afd the minimum to 0. The initial rating is zero
unless the studeft specifies a differeft rating when starting a session.

If the student passes a lesson, a new lesson is sedected and the process repeats. If the student fails, a
false status is returned and the program reverts to the previous lesson and tries another alternative. If it can
not find another alternative, it skips forward a lesson. bye , bye, which causes a graceful exit from the learn
system. Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limitation
on cycles in that it will not present a lesson twice in the same session. If the student is unable to answer
one of the exercises correctly, the driver searches for a previous lesson with a set of alternatives as succes-
sors (following the #next line). From the previous lesson with alternatives one route was taken earlier; the
program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response, or
try to estimate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson writing is
so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other operat-
ing systems. These include the ease of manipulating files and directories, file redirection, the ability to use
the command interpreter as just another program (even in a pipeline), command status testing and branch-
ing, the ability to catch signals like interrupts, and of course the pipeline mechanism itself. Although some
parts of learn might be transferable to other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in words in the driver program, and made

-- --

- 9 -

more use of the facilities of UNIX. For example, file comparison was done by creating a cmp process,
rather than comparing the two files within learn . Lessons were not stored as text files, but as archives.
There was no concept of the in-line document; even #print had to be followed by a file name. Thus the ini-
tialization for each lesson was to extract the archive into the working directory (typically 4-8 files), then
#print the lesson text.

The combination of such things made learn slower. The new version is about 4 or 5 times faster.
Furthermore, it appears even faster to the user because in a typical lesson, the printing of the message
comes first, and file setup with #create can be overlapped with the printng, so that when the program fin-
ishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files. They
can be edited without any difficulty, and UNIX text manipulation tools can be applied to them. The result
has been that there is much less resistance to going in and fixing substandard lessons.

5. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers who
have used learn :

(a) A novice must have assistance with the mechanics of communicating with the computer to get
through to the first lesson or two; once the first few lessons are passed people can proceed on their
own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It
would help if there were a low level reference card for UNIX to supplement the existing programmer
oriented bulky manual and bulky reference card.

(c) The concept of ‘‘substitutable argument’’ is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a reason-
ably intelligent and motivated novice to proceed from ignorance to a reasonable ability to create new files
and manipulate old ones seems to be a few days, with perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in the same room with someone who knows
UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The burden on the
counselor, however, is much lower than that on a teacher of a course. Ideally, the students should be
encouraged to proceed with instruction immediately prior to their actual use of the computer. They should
exercise the scripts on the same computer and the same kind of terminal that they will later use for their real
work, and their first few jobs for the computer should be relatively easy ones. Also, both training and initial
work should take place on days when the UNIX hardware and software are working reliably. Rarely is all of
this possible, but the closer one comes the better the result. For example, if it is known that the hardware is
shaky one day, it is better to attempt to reschedule training for another one. Students are very frustrated by
machine downtime; when nothing is happening, it takes some sophistication and experience to distinguish
an infinite loop, a slow but functioning program, a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the CAI sys-
tem, and do not try to read manuals or use other learning aids. This is unfortunate, not only because of the
increased demands for completeness and accuracy of the scripts, but because the scripts do not cover all of
the UNIX system. New users should have manuals (appropriate for their level) and read them; the scripts
ought to be altered to recommend suitable documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student’s viewpoint, the most
serious is that lessons still crop up which simply can’t be passed. Sometimes this is due to poor explana-
tions, but just as often it is some error in the lesson itself — a botched setup, a missing file, an invalid test
for correctness, or some system facility that doesn’t work on the local system in the same way it did on the
development system. It takes knowledge and a certain healthy arrogance on the part of the user to

* We have even known an expert programmer to decide the computer was broken when he had simply left his terminal in
local mode. Novices have great difficulties with such problems.

-- --

- 10 -

recognize that the fault is not his or hers, but the script writer’s. Permitting the student to get on with the
next lesson regardless does alleviate this somewhat, and the logging facilities make it easy to watch for
lessons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was often excruciat-
ingly slow and made a significant drain on the system. The current version so far does not seem to have
that difficulty, although some scripts, notably eqn , are intrinsically slow. eqn , for example, must do a lot of
work even to print its introductions, let alone check the student responses, but delay is perceptible in all
scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at
the wrong time, or by removing critical files, or any number of similar slips. The defenses against such
problems have steadily been improved, to the point where most students should not notice difficulties. Of
course, it will always be possible to break learn maliciously, but this is not likely to be a problem.

One area is more fundamental — some UNIX commands are sufficiently global in their effect that
learn currently does not allow them to be executed at all. The most obvious is cd , which changes to
another directory. The prospect of a student who is learning about directories inadvertently moving to
some random directory and removing files has deterred us from even writing lessons on cd , but ultimately
lessons on such topics probably should be added.

6. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their suggestions
and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M. J. McAlpin have
provided substantial feedback. Conversations with E. Z. Rothkopf also provided many of the ideas in the
system. We are also indebted to Don Jackowski for serving as a guinea pig for the second version, and to
Tom Plum for his efforts to improve the C script.

References

1. B. F. Skinner, ‘‘Why We Need Teaching Machines,’’ Harvard Educational Review 31, pp.377-398
(1961).

2. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories (1978). See section
ed (I).

3. B. W. Kernighan, A Tutorial Introduction to the Unix Editor ed, 1974.

4. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey (1978).

-- --

