LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersg 07974

ABSTRET

This paper describes the secomdsion of the learn program for interpreting CAl
scripts on the UNIXT operating system, and a set of scripts thaider@a computerized
introduction to the system.

Six current scripts a@r basic commands and file handling, the edadditional
file handling commands, the eqgn program for mathematical typing,-thes™" package
of formatting macros, and an introduction to the C programming language. These scripts
now include a total of about 530 lessons.

Many users from a wideariety of backgrounds ke used learn to acquire basic
UNIX skills. Most usage wolves the first tw scripts, an introduction to uNix files and
commands, and the UNIX editor

The second ersion of learn is about four timesdter than the pveous one in
CPU utilization, and muchaster in percged time because of betteveslap of comput-
ing and printing. It also requires less file space than the #rsion. Magy of the
lessons h&e been reised; n&v material has been added to reflect changes and enhance-
ments in UNIX itself. Script-writing is also easier because wisiens to the script lan-
guage.

January 30, 1979

TUNIX is a rgistered trademark of The Open Group.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersg 07974

1. Educational Assumptions and Design.

First, the vay to teach people toto do something is to kia them do it. Scripts should not contain
long pieces of xplanation; thg should instead frequently ask the student to do some task. So teaching is
always by eample: the typical script fragment st®a small gample of some technique and then asks the
user to either repeat thataample or produce aaviation on it. All are intended to be easy enough that most
students will get most questions right, reinforcing the desiredvtigha

Most lessonsdil into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student igegia chance toxperiment before replying. The script checks for
the correct reply Problems of this form are sparingly used.

The second type asks for @md or number as an answeéior example a lesson on files might say

How many files & thee in the curent directory? Ype ‘answer N’, where N is the number of files.
The student isxpected to respond (perhaps aftgperimenting) with

answer 17

or whateer. Surprisingly often, hwever, the idea of a substitutablegament (i.e., replacing N by 17) is
difficult for non-programmer students, so the first ich lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the input or
output are monitored, and the student tymesly when the task is done. Figure 1wha sample dialog
that illustrates the last of these, usingtl@ssons about the cat (concatenate, i.e., print) commaed tak
from early in the script that teaches file handling. Most learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the lesson number
that has just been completed, permitting the student to restart the script after that lesson. If the answer is
wrong, the student is f&fred a chance to repeat the lesson. HBpeéd’ rating of the student ggplained in
section 5) is gien after the lesson number when the lesson is completed successfully; it is printed only for
the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproaiyto determine if the student trutynderstand$’'what he
or she is doing; accordinglthe current learn scripts only measure performance, not comprehension. If the
student can perform awgin task, that is deemed to Hedrning’’1

The main point of using the computer is that what the student does i®dHeckorrectness imme-
diately Unlike mary CAIl scripts, havever, these scripts puide fen facilities for dealing with wrong
answers. In practice, if most of the answers are not right the scripgifuaef, the uniersal solution to stu-
dent error is to prade a n&v, easier script. Anticipating possible wrong answers is an endless job, and it is
really easier as well as better toyide a simpler script.

Along with this goes the assumption thaything can be taught to @nody if it can be broén into
sufiiciently small pieces. Arthing not absorbed in a single chunk is just sulddd.

To avoid boring the dster students, @ver, an efort is made in the files and editor scripts to pro-
vide three tracks of dérent dificulty. The fastest sequence of lessons is aimed at roughlyulkeahd
speed of a typical tutorial manual and should be adequateviewrand for well-prepared students. The

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory List it
by saying "cat food"; then type "ready".
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a (1)

Of course, you can print wrfile with "cat".

In particular it is common to first use

"Is" to find the name of a file and then "cat"
to print it. Note the dference between

"Is", which tells you the name of the file,

and "cat", which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat Peesident

cat: cant open President

$ ready

Sorry, that’s not right. Do you @ant to try agin? yes

Try the problem aajn.

$ls

.ocopy

X1

roosevelt

$ cat mosevelt
this file is named rooselt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat" command can also prinvegal files

at once. Indct, it is named "cat" as an ablegion
for "concatenate"....

next track is intended for most users and is roughly twice as loggicdlly, for example, the dst track

might present an idea and ask foragiation on the xxample shan; the normal track will first ask the stu-

dent to repeat thexample that s shavn before attempting aaviation. The third and sleest track,

which is often three or four times the length of thst firack, is intended to be adequate fgroae. (The

lessons of Figure 1 are from the third track.) The multiple tracks also mean that a student repeating a
course is unlikly to hit the same series of lessons; this esdk profitable for a shgkuser to back up and

try acpin, and mawy students hae done so.

The tracks are not completely distinctwawer. Depending on the number of correct answers the
student has gen for the last f& lessons, the program may switch tracks. Theedis actually capable of
following an arbitrary directed graph of lesson sequences, as discussed in section 5. Some more structured
arrangement, leever, is used in all current scripts to aid the script writer gaoizing the material into
lessons. It is stitiently difficult to write lessons that the three-track theory is notviahb very closely
except in the files and editor scripts. Accordinghysome cases, thadt track is produced merely by skip-
ping lessons from the sier track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same materiabtks a w
book is not the selection of tracksitlactual hands-orxperience. Learning by doing is much moréeef
tive than pencil and papexezcises.

Learn also preides a mechanical check on performance. The finstion in &ct would not let the
student proceed unless it raes correct answers to the questions it set anduidvnot tell a student the
right answer This somevhat Draconian approach has been moderatedrsion 2. Lessons are sometimes
badly worded or gen just plain wrong; in such cases, the student has no recourse. But if a student is sim-
ply unable to complete one lesson, that should netepteaccess to the rest. Accordinglye current gr-
sion of learn allavs the student to skip a lesson that he cannot pdss;’aanswer to the'Do you want to
try again?’ question in Figure 1 will pass to the xtelesson. It is still true that learn will not tell the stu-
dent the right answer

Of course, there areaiid objections to the assumptions &0 In particular some students may
object to not understanding what yhare doing; and the procedure of smashingryghing into small
pieces may pnoke the retort'you cant cross a ditch in terjumps” Since writing CAl scripts is consid-
erably more tedious than ordinary manualsyéwer, it is safe to assume that there willvays be alterna-
tives to the scripts as aaw of learning. Indct, for a reference manual of 3 or 4 pagesoitilel not be sur
prising to hae a tutorial manual of 20 pages and a (multi-track) script of 100 pages. Thus the reference
manual will ist long before the scripts.

2. Scripts.

As mentioned abe, the present scripts try at most to folla three-track theoryThus little of the
potential compleity of the possible directed graph is eny#d, since care must be &kin lesson con-
struction to see thavery necessanyatt is presented invery possible path through the units. In addition,
it is desirable thatwery unit hae alternate successors to deal with student errors.

In most &isting courses, the firstvielessons are deted to checking prerequisitesorFexample,
before the student is alled to proceed through the editor script the scrgpifies that the student under
stands files and is able to type. It is felt that the sooner lack of student preparation is detected, the easier it
will be on the student. Amne proceeding through the scripts should be getting mostly correct answers;
otherwise, the system will be unsatistiory both because the wrong habits are being learned and because
the scripts mad little efort to deal with wrong answers. Unprepared students should not be encouraged to
continue with scripts.

There are some preliminary items which the student musv kafore ag scripts can be tried. In
particular the student must kmohow to connect to a UNIXT system, set the terminal propéoly in, and
execute simple commands (e.g., learn itself). In addition, the character erase and lineveihtimms (#
and @) should be kmo. It is hard to see e this much could be taught by compuégaled instruction,
since a student who does not knthese basic skills will not be able to run the learning program. A brief
description on paper is priodled (see Appendix A), although assistance will be needed for theiratife
utes. This assistance,wever, need not be highly skilled.

The first script in the current set deals with files. It assumes the basiteklge abwe and teaches
the student about the Is, cat, mv, rm, cp andaiimmands. It also deals with the ablietion characters
* ?,and []in file names. It does notveo pipes or I/O redirection, nor does it present theynogtions on

TUNIX is a registered trademark of The Open Group.

the Is command.

This script contains 31 lessons in tlastftrack; tw are intended as prerequisite checksesere
review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages typed at
the student to lggn each lesson total 4,476omds. The gerage lesson thus dies with a 60-wrd mes-
sage. In general, thadt track lessons ¥ somehat longer introductions, and the wltracks some&hat
shorter ones. The longest message is letdisvand the shortest 14.

The second script trains students in the use of the uNIX xioaditor ed , a sophisticated editor using
regular expressions for searchirfgAll editor features xcept encryption, mark names and *;’ in addressing
are coered. Thedst track contains 2 prerequisite checks, 93 lessons, awntka tesson. It is supple-
mented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is&®&72 w
long. The ed tutoridlis 6,138 verds long. Thedst track through the ed script is 7,408rds of &plana-
tory messages, and the total ed script, 242 lessons, has 1508d%. virhe werage ed lesson is thus also
about 60 wrds; the lagest is 171 wrds and the smallest 10. The original ed script represents about three
man-weeks of ébrt.

The adanced file handling script deals with Is options, I/@edsion, pipes, and supporting programs
like pr, wc, tail, spell and gap. (The basic file handling script is a prerequisite.) Itis not as refined as the
first two scripts; this is reflected at least partly in thet fthat it preides much less of a full three-track
sequence than thelo. On the other hand, since it is peredias ‘advanced; it is hoped that the student
will have somerhat more sophistication and be better able to cope with it at a reasonablyhlgif [mer
formance.

A fourth script ceers the egn language for typing mathematics. This script must be run on a termi-
nal capable of printing mathematics, for instance tA&IDB0O0 and similar Diablo-based terminals, or the
nearly etinct Model 37 teletype. Aayn, this script is relately short of tracks: of 76 lessons, only 17 are
in the second track and 2 in the third track. Most of theséde@dditional practice for students who are
having trouble in the first track.

The —-ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future. Further
more, the linear style of a single learn script is sshat inappropriate for the macros, since the macro
package is composed of nyaimdependent features, andvfeisers need all of them. ltonld be better to
have a selection of short lesson sequences dealing with the features independently

The script on C is in a state of transition. Hsaoriginally designed to folloa tutorial on C, bt that
document has since become obsolete. The current script has been partiaiftedaio follev the order of
presentation in The C Bgramming Languge® but this job is not complete. The C scripasvneer
intended to teach C; rather it is supposed to be a serigsrafses for which the computer pides check-
ing and (upon success) a suggested solution.

This combination of scripts gers much of the material whichyaonix user will need to kne to
male efective use of the system. it enlagement of the adnced files course to include more on the
command interpretethere will be a relately complete introduction to uNixvailable via learn. Although
we male no pretense that learn will replace other instructional materials, it shouldpra useful supple-
ment to &isting tutorials and reference manuals.

3. Experience with Students.

Learn has been installed on madifferent uNix systems. Most of the usage is on the firgt tw
scripts, so these are more thoroughlyudged and polished. As a (random) sample of ugereence, the
learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period. About
3600 of these are in the files script, 4100 in the editut 1400 in adanced files. The passing rate is about
80%, that is, about 4 lessons are passedvienyeone &iled. There hee been 86 distinct users of the files
script, and 58 of the editoiOn our system at Murray Hill, there Y& been nearly 2000 lessongep two
weeks that include Christmas andWN¥ear Users hae ranged in age from six up.

It is difficult to characterize typical sessions with the scripts;ynirestances st of someone doing

-5-

one or tvwo lessons and then logging out, as do instances of someone pausing in a script for twenty minutes
or more. In the earlierersion of learn, theverage session in the files course took 32 minutes asedemb

23 lessons. The distukion is quite broad and aked, havever; the longest sessioras/ 130 minutes and

there were fig sessions shorter thandiminutes. Thewerage lesson took about 80 seconds. These num-
bers are roughly typical for non-programmers; a ugest can do the scripts at approximately 30 seconds

per lesson, most of which is the system printing.

At present wrking through a section of the middle of the files script took about 1.4 seconds of pro-
cessor time per lesson, and a systeqmed typing quickly took 15 seconds of real time per lesson. A
novice would probably tak at least a minute. Thus a UNIX system could support ten studerkmgv
simultaneously with some spare capacity

4. The Script Interpreter.

The learn program itself merely interprets scripts. Ityides fcilities for the script writer to capture
student responses and thefieefs, and simplifies the job of passing control to andvexang control from
the student. This section describes the operation and usage ofvérepdoigram, and indicates what is
required to produce awescript. Readers only interested in tiéstng scripts may skip this section.

The file structure used by learn is shoin Figure 2. There is one parent directory (named lib) con-
taining the script data. Win this directory are subdirectories, one for each subject in which a course is
available, one for logging (namedd®, and one in which user sub-directories are created (named play).
The subject directory contains master copies of all lessons, plissupporting material for that subject. In
a gien subdirectoryeach lesson is a singletdile. Lessons are usually named systematically; the file that
contains lesson n is called Ln.

Figure 2: Directory structure for learn

lib
play
studentl
files for studentl...
student2
files for student2...
files
LO.1a lessons for files course
LO.1b
editor

(other courses)

log

When learn is gecuted, it ma&s a piwate directory for the user toonk in, within the learn portion
of the file system. A fresh cgpf all the files used in each lesson (mostly data for the student to operate
upon) is made each time a student starts a lesson, so the script writer may assuagythatgeis reini-
tialized each time a lesson is entered. The student directory is deleted after each sgspeEmmament
records must bedpt elsevhere.

The script writer must prade certain basic items in each lesson:

1)
(2)
3)
(4)

()

the tet of the lesson;
the set-up commands to beeuted before the user gets control;
the data, if an which the user is supposed to edit, transform, or otherwise process;

the galuating commands to beexuted after the user has finished the lesson, to decide whether the
answer is right; and

a list of possible successor lessons.

Learn tries to minimize the wrk of bookleeping and installation, so that most of thieréfinvolved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor
mance.

The basic sequence ofemts is as follas. First, learn creates theonking directory Then, for each

lesson, learn reads the script for the lesson and processes it a line at a time. The lines in the script are: (1)
commands to the script interpreter to print something, to create a files, to test something, etttp(Bgte
printed or put in a file; (3) other lines, which are sent to the shell tadmited. One line in each lesson

turns control ger to the user; the user can rury amix commands. The user mode terminates when the
user types yes, nogady, or answer . At this point, the useriork is tested; if the lesson is passed,\& ne
lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; thiswe ehéigure 3.

Figure 3: Sample Lesson

#print
Of course, you can print grfile with "cat".
In particular it is common to first use
"Is" to find the name of a file and then "caf'
to printit. Note the df€rence between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create rooseslt
this file is named rooselt
and contains three lines of
text.
#cop/out
#user
#uncopyout
tail -3 .ocoy >X1
#cmp X1 rooseelt
#log
#next
3.2b2

Lines which bgin with # are commands to the learn script interprekar example,

#print

causes printing of grtext that follows, up to the nd line that bgins with a sharp.

#print file

prints the contents of file; it is the same as cat fitehas lesswerhead. Both forms of #print ka the
added property that if a lesson éléd, the #print will not bexecuted the second time through; thisids
annging the student by repeating the preamble to a lesson.

t#create filename

creates a file of the specified name, and copigsansequent x¢ up to a # to the file. This is used for cre-
ating and initializing wrking files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the sikeltdtioe. The #user mode
is terminated when the student types one of yes, eadyr or answer. At that time, the der resumes
interpretation of the script.

#copyin

#uncopyin
Anything the student types between these commands is copied onto a file called’tispgts the script
writer interrogte the studerd’responses upongaining control.

#copyout
#uncopyout

Between these commandsyamnaterial typed at the student byygorogram is copied to the file .ocopy
This lets the script writer interrage the dect of what the student typed, which true badis in the perfor
mance theory of learning usually prefer to the studexdtual input.

#pipe

#unpipe
Normally the student input and the script commands are fed to the unix command interpretsingtti *
one line at a time. Thisan't do if, for xample, a sequence of editor commands ivigeal, since the
input to the editor must be handed to the egditot to the shell. Accordinglyhe material between #pipe
and #unpipe commands is fed continuously through a pipe so that such sequerice#fwopyout is also
desired the copyout bragis must include the pipe brak.

There are seeral commands for setting status after the student has attempted the lesson.
#cemp filel file2

is an in-line implementation of cmp , which compares fites for identity
#matd stuf

The last line of the studeatinput is compared to sfyfand the success aiff status is set according to it.
Extraneous things li&the vord answer are stripped before the comparison is made. There maydralse
#matdt lines; this preides a comenient mechanism for handling multipleght’” answers. Ag text up to

a # on subsequent lines after a successful #matprinted; this is illustrated in Figure 4, another sample
lesson.

#bad stuf

This is similar to #matt, except that it corresponds to specifiildire answers; this can be used to produce
hints for particular wrong answers thavedeen anticipated by the script writer

#succeed
#fail

print a message upon successailufe (as determined by someyicelis mechanism).

When the student types one of tttefmmands’yes, no, eady, or answer, the ddr terminates the
#user command, and/eluation of the studerst'work can bgin. This can be done either by thailt-in
commands ab@, such as #mdicand #cmp, or by status returned by normal UNIX commands, typically
grep and test. The last command should return status true (0) if the tesklane successfully analde
(non-zero) otherwise; this status return tells theedrivhether or not the student has successfully passed
the lesson.

Performance can be logged:
#log file
writes the date, lesson, user name and speed rating, and a saibeessgiflication on file The command

Figure 4. Another Sample Lesson

#print

What command will mee the current line
to the end of the file? ype

"answer COMMAND", where COMMAND is the commanid.
#copyin

#user
#uncopyin
#match m$
#match .m$
"m$" is easier
#log

#next

63.1d 10

#log

by itself writes the logging information in the logging directory within the learn hieyamhd is the ner
mal form.

#next

is followed by a fev lines, each with a successor lesson name and an optional speed rating on it. A typical
set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable feltmn lesson for students with a speed rating of 10 units, 25.2a

for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each session
with a student; the rating is increased by one each tiee the student gets a lesson right and decreased by four
each time the student gets a lesson wrong. Thus ter dliies to maintain a gel such that the users get

80% right answers. The maximum rating is limited to 10 afd the minimum to 0. The initial rating is zero
unless the studeft specifies deliéft rating when starting a session.

If the student passes a lesson, & fesson is sedected and the process repeats. If the staitkerd f
false status is returned and the progravente to the pndous lesson and tries another altewtilf it can
not find another alternat, it skips forvard a lesson. bye, bye, which causes a gracefutem the learn
system. Hanging up is the usuaMie’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limitation
on g/cles in that it will not present a lesson twice in the same session. If the student is unable to answer
one of the rercises correctlythe driver searches for a pfieus lesson with a set of alternats as succes-
sors (follaving the #ngt line). From the préous lesson with altern&gs one route &as talen earlier; the
program simply tries a dérent one.

It is perfectly possible to write sophisticated scripts thatuate the studemst'speed of response, or
try to estimate the gjance of the answeor provide detailed analysis of wrong answers. Lesson writing is
so tedious alreagdyrowvever, that most of these abilities aredli to go unused.

The driver program depends hélg on features of UNIX that are novailable on may other operat-
ing systems. These include the ease of manipulating files and directories, file redirection, the ability to use
the command interpreter as just another prograen(é a pipeline), command status testing and branch-
ing, the ability to catch signals 8kinterrupts, and of course the pipeline mechanism itself. Although some
parts of learn might be transferable to other systems, some generality will probably be lost.

A bit of history: The first grsion of learn had feer kuilt-in words in the drier program, and made

-9-

more use of theatilities of uNIX. For example, file comparison as done by creating a cmp process,
rather than comparing the avwfiles within learn. Lessons were not stored ag fdes, hut as archies.
There vas no concept of the in-line documentge #print had to be foliwed by a file name. Thus the ini-
tialization for each lessonag to &tract the archie into the warking directory (typically 4-8 files), then
#print the lesson td.

The combination of such things made learnwa&o The na&v version is about 4 or 5 timeadter
Furthermore, it appearssen faster to the user because in a typical lesson, the printing of the message
comes first, and file setup with #ate can beerlapped with the printng, so that when the program fin-
ishes printing, it is really ready for the user to type at it.

It is also a great adwtage to the script maintainer that lessons anejust ordinary tet files. The
can be edited without grdifficulty, and UNIX text manipulation tools can be applied to them. The result
has been that there is much less resistance to going in and fixing substandard lessons.

5. Conclusions

The following obserations can be made about secretaries, typists, and other non-programmers who
have used learn:

(& A nwice must hee assistance with the mechanics of communicating with the computer to get
through to the first lesson or ewvonce the first f@ lessons are passed people can proceed on their
own.

(b) The terminology used in the firsiWfdessons is obscure to thosexperienced with computers. It
would help if there were avolevel reference card for UNIX to supplement théseng programmer
oriented bilky manual and toky reference card.

(c) The concept ofsubstitutable ayjument’ is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Maiion matters a great deal viever.

It takes an hour or twfor a n@ice to get through the script on file handling. The total time for a reason-
ably intelligent and motated neice to proceed from ignorance to a reasonable ability to creatdilas
and manipulate old ones seems to benadays, with perhaps half of each day spent on the machine.

The normal vay of proceeding has been tosbatudents in the same room with someone whw&no
UNIX and the scripts. Thus the student is not brought to a halt figutlifjuestions. Theurden on the
counselor havever, is much lever than that on a teacher of a course. Ide#ily students should be
encouraged to proceed with instruction immediately prior to their actual use of the conhgeshould
exercise the scripts on the same computer and the same kind of terminalythveitl ta¢er use for their real
work, and their first f& jobs for the computer should be relaty easy ones. Also, both training and initial
work should tak place on days when the uNix hamh® and softare are wrking reliably Rarely is all of
this possible, bt the closer one comes the better the result.efample, if it is knavn that the hardare is
shaly one dayit is better to attempt to reschedule training for another one. Studentrafeustrated by
machine dantime; when nothing is happening, it ¢égksome sophistication angperience to distinguish
an infinite loop, a slw but functioning program, a programneiting for the userand a brokn machine.*

One disadantage of training with learn is that students come to depend completely on the CAI sys-
tem, and do not try to read manuals or use other learning aids. This is unfortunate, not only because of the
increased demands for completeness and agcofdbe scripts, bt because the scripts do novepall of
the UNIX system. Ne& users should va& manuals (appropriate for theivdéd) and read them; the scripts
ought to be altered to recommend suitable documents gadtudents to read them.

There are seeral other dificulties which are clearlyvdent. From the studestvievpoint, the most
serious is that lessons still crop up which simply £he'passed. Sometimes this is due to paplaaa-
tions, hut just as often it is some error in the lesson itself — a botched setup, a missing filalidriaat
for correctness, or some systeawifity that doesr’work on the local system in the samawit did on the
development system. It tak knavledge and a certain healttarrogance on the part of the user to

* We hare even knavn an &pert programmer to decide the computasvbrolen when he had simply left his terminal in
local mode. Nuices hae great dificulties with such problems.

-10 -

recognize that theatilt is not his or hers,ub the script writes. Permitting the student to get on with the
next lesson rgardless does all@ate this somehat, and the loggingatilities male it easy to atch for
lessons that no one can pass, ibis still a problem.

The biggest problem with the pieus learn was speed (or lack thereof) — ia# often rcruciat-
ingly slov and made a significant drain on the system. The curegston so &r does not seem tovea
that dificulty, although some scripts, notably eqn, are intrinsically.skeqn , for @ample, must do a lot of
work even to print its introductions, let alone check the student respongedelby is perceptible in all
scripts from time to time.

Another potential problem is that it is possible to break learn ierently by pushing interrupt at
the wrong time, or by remving critical files, or apm number of similar slips. The defensesiagt such
problems hee steadily been impwed, to the point where most students should not notiGeutifes. Of
course, it will alvays be possible to break learn malicioyslyt this is not lilely to be a problem.

One area is more fundamental — some UNIX commands afieiesnly global in their dect that
learn currently does not alle them to be xecuted at all. The most wibus is cd, which changes to
another directory The prospect of a student who is learning about directories @rsehtly meing to
some random directory and rewiag files has deterred us fromem writing lessons on cd pbultimately
lessons on such topics probably should be added.

6. Acknowledgments

We are grateful to all those whouestried learn, for we hae benefited greatly from their suggestions
and criticisms. In particulaM. E. Bittrich, J. L. Blue, S. I. Feldman, R. Fox, and M. J. McAlpin hee
provided substantial feedback. Gamsations with E. Z. Rotlopf also preided man of the ideas in the
system. W& are also indebted to Don Jawfski for serving as a guinea pig for the secoarsion, and to
Tom Plum for his dbrts to imprare the C script.

References

1. B. F Skinner “Why We Need €aching Machine$,Harvard Educational Reéew 31, pp.377-398
(1961).

2. K. Thompson and D. M. Ritchie, UNixdgrammers Manual, Bell Laboratories (1978). See section
ed (1).

3. B. WKernighan, A Wtorial Introduction to the Unix Editor ed, 1974.

4. B. WKernighan and D. M. Ritchie, The Cdgramming Languge, Prentice-Hall, Engl@ood Cliffs,
New Jersg (1978).

