iBCS2 & NetBSD

I know that there is some people out there that seem to be all into Xenix, and old binaries… So I thought I’d share this little gem I found before I head out for the day… I came across this post, talking about how ibcs2 has fallen apart in the latest version of NetBSD. But the gem in there is that version 4.0.1 works perfectly fine!

So I copied in the old gcc, filled in some bits and….

Qemu 0.14.0 NetBSD 4.0.1 running Xenix gcc
Qemu 0.14.0 NetBSD 4.0.1 running Xenix gcc

It works!

Robots is so perfect you’d never know!

Qemu 0.14.0 NetBSD 4.0.1 running robots
Qemu 0.14.0 NetBSD 4.0.1 running robots

And it runs Xenix Dungeon/Zork without missing a beat!

Qemu 0.14.0 NetBSD 4.0.1 running dungeon
Qemu 0.14.0 NetBSD 4.0.1 running dungeon

So this may be yet another avenue for some people… I’d suspect that you could even build the 32v userland under the Xenix tools…? Since all the default stuff is keyed to licensing, but you could roll your own Unix v7 32bit userland which basically is Xenix and go from there…. Maybe even some of the OpenSolaris SYSVR4 stuff as well but that sounds too ambitious!

MS-DOS Player

Since the last time I reviewed it, the MS-DOS Player, by Takeda Toshiya has come a long way!. He’s fleshed out more of the MS-DOS emulation, and updated the CPU core.

I’ve now been able to run the Microsoft C 5.1 compiler under Windows 7:

MS-DOS Player running Microsoft C 5.1
MS-DOS Player running Microsoft C 5.1

Check it out!

The MS-DOS Player is similar in nature to DOSBox, except that it’s not interactive, but rather built for CLI batch based operation. The MS-DOS Player seems to have some 80286 capabilities, but it’s BIOS/DOS emulation doesn’t seem to have the protected mode interface to allow dos extenders to work.

It’s certainly great for people that still have ANCIENT cli based programs that you’d want to call & capture their output. This is a life saver for some of us that still rely on dbaseIII & some ancient i8085 micro controller.

Line is not an emulator

I don’t know how I didn’t find this earlier, and how it’s been overlooked for so long….

But this incredible program, LINE, will run statically linked Linux ELF binaries on Windows.

Yes, you read that right, this user mode program will load an ELF exe, and run it under a software debugger with no need for device drivers, and intercept all the sycalls (ie int 0x80’s) through the cygwin1.dll, giving you a POSX/Command line linux experience.

It does come bundled with various hello programs, and a few things on testing forks… But the real magic for me was being able to grab a static version of dungeon, and running it on both Windows 7 x64, and emulated NT 4.0.

And it works!

Line running Dungeon

I’ve put my copy of dungeon, along with a copy of cygwin1.dll that works with the LINE package here for anyone interested.

I’m just amazed at the size, and simplicity of the whole thing…..

In the documentation there is even mentions of NSO (Native shared objects?), and dynamic linking…

Clearly this project should have had more of a future to it!

psim, the PowerPC simulator

Psim is one of those great peices of software that has been long sice forgotten. In every copy of GDB since 4.14 it has been sitting there dormant. What is it? Well it’ll emulate various PowerPC systems to some degree (GXemul & Qemu are better now) but what is cool is the ‘run’ program. Simply put, any system that can run GDB can run powerpc NetBSD statically linked EXE’s! Now isn’t that exciting!

Now I know you’ll want to build your own copy of the ‘run’ program, and then setup a cross compile enviroment so that you, to can produce NetBSD PowerPC executables. I’m assuming that you are not on a PowerPC running NetBSD, since this whole excersize would be… redundant.

For this example I’m using OpenBSD 4.0 on the i386. You will need a real unixy envioment for this. MinGW isn’t good enough, cygwin however is. BSD/Linux will work too.

Ok first let’s start with building the run program. I’m going to download my GDB from ftp://ftp.gnu.org/ .

Gdb 5.3

Unpack it somewhere, and then run the following commadn to configure GDB.


./configure --enable-sim-powerpc --target=powerpc-unknown-eabi --prefix=/usr/local/psim

 

You will need to replace or update the sim/ppc/emul_netbsd.c program to include system calls up to 300, and make sure that 279 is setup to do_fstat. Otherwise you will be unable to run any programs. This is also a good excersize to see how libraries interact with the simulator so you can add your own native interfaces, for things like OpenGL, SDL….

 

Now we are ready to build it.. You could use -O0 in your CFLAGS to build it quicker, but it will result in a slower run times.. If you have issues with this you will want to use those flags so it doesnt take forever to be building this thing. Otherwise a simple ‘make;make install’ will suffice.

Next up is binutils. I’m using version 2.17

Binutils 2.17

Again download and unpack this somewhere (/usr/src?) Then run the following to configure your binutils


./configure --target=powerpc-unknown-netbsd --prefix=/usr/local/psim

Since execution time here isn’t as critical as the emulator, and I want to hurry it along I’m going to use the following command to build & install:


make CFLAGS=’-O0 -pipe’ ;make install

On OpenBSD 4.1 the install fails, and I had to manually copy the binutils applications into /usr/local/psim/powerpc-unknown-netbsd-bin

Before you build gcc you will want to populate your directory with headers & libraries from NetBSD 1.4 get the compiler package and copy the usr/lib files to /usr/local/psim/powerpc-unknown-netbsd/lib and the usr/include files to /usr/local/psim/include . I get my includes & lib files from here ( ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-archive/NetBSD-1.4/macppc/binary/sets/comp.tgz )

Gcc 3.3

You may need to do some special tweaking to this source to get it to run correctly
Optionally running make with CFLAGS=-O0 may speed your compliation.

You know the drill by now. Download, unpack and configure as follows:


./configure --target=powerpc-unknown-netbsd --prefix=/usr/local/psim --disable-shared --enable-languages="c" --disable-threads --disable-intl

Now make the compiler as follows. Note that I’m only interested in the C compiler. I haven’t even looked at C++/ObjectiveC…

You will need to add /usr/local/psim/bin into your path, as Gcc 3.3 will expext to be able to call powerpc-unknown-netbsd-ld/ar/ranlib etc while building itself.

export PATH=$PATH:/usr/local/psim/bin

Next I would comment out the following line from gcc/builtins.c

builtins.c:2864:// error (“__builtin_saveregs not supported by this target”);

Now we can build the compiler


make CFLAGS=’-O0 –pipe’

Now before we get all giddy, lets test this thing out!

cd into the gcc directory, and lets make a simple c program… hello world is a good starting place.

use xgcc to compile it, and this will test your c compiler.


#include <stdio.h>
void main(void)
{
printf("hello from PowerPC\n");
}

bash-2.05a$ xgcc hello.c -o hello

hello.c: In function main':hello.c:2: warning: return type ofmain’ is not `int’

bash-2.05a$ file hello

hello: ELF 32-bit MSB executable Version 1

bash-2.05a$ ./hello

bash: ./hello: cannot execute binary file

Ok the executable that we have just created is NOT for our native platform, but for the PowerPC.. So lets kick in the emulator! If you didn’t patch your emul_netbsd.c you’ll get this:


% /usr/local/psim/bin/powerpc-unknown-eabi-psim hello

do_call() os_emul call 279 out-of-range

 

However if you did, this is what you’ll get!
% /usr/local/psim/bin/powerpc-unknown-eabi-psim hello
hello from PowerPC

On my computer the installation of gcc gets retarded so I manually copy the files to the right places.


cp xgcc to /usr/local/psim/bin/powerpc-unknown-netbsd-gcc

mkdir -p /usr/local/psim/lib/gcc-lib/powerpc-unknown-netbsd/3.3/

cp cc1 /usr/local/psim/lib/gcc-lib/powerpc-unknown-netbsd/3.3/

cp crtsaveres.o /usr/local/psim/lib/gcc-lib/powerpc-unknown-netbsd/3.3/

Building cross compilers is always involved, but hopefully this will help someone.