Cockatrice III 0.5a update

Here’s to US!

Well this is a ‘small’ update, but with a big change, the audio is for the most part working great now thanks to this fix from rakslice. Namely changing SDL to MSB:

desired.format = AUDIO_S16MSB;

And another MinGW tweak, and yeah it’s GREAT!

Even stuff like RealAudio work now! I’ll add some self hosted video later as it’d just get struck from anything public.

Also since the RealAudio player is timebombed for installing, I added some lazy offset to remove however many billions of ticks from the clock letting you jump in some random point in the past when it won’t care.

I guess the final if any justification for a bump would be rebuilding with GCC 8.1.0 on MinGW. I somehow butchered the slirp.h to make it too MinGW’ish so it won’t clean build on Linux or OS X, but I have re-butchered a private branch and it works.. I just need to merge and clean but I’m not in the mood at the moment.

I could be crazy but it “feels” faster.

At any rate, I found that System 7 is more agreeable to running Return to Zork, just use some toast image mounter from within MacOS, and it’ll run!

Also there is some ULONGLONG weirdness going on, so I had to backout Peter’s changes for larger disks. No doubt some standard type thing change in GCC 8.

You can download binaries/source from Sourceforge.

Download Cockatrice III
Download Cockatrice III

Thanks to shadyjesse Philpem’s FreeBee can now run the C compiler!

I call it Freebee with C!

Again super thanks to shadyjesse for finding and fixing the larger issues, and philpem for his great emulator, freebee!

So 1970’s

I have to say, having never played with an AT&T Unix PC, it’s kind neat with this windowing non X11 UI. Although even in emulation it’s incredibly slow. But such was the Unix microprocessor revolution of the era, it’s crazy to think the mighty SUN-2 is also on the same level of performance, although SUN would at least go the way of the 68020 before giving up on the 68k for SPARC.

Even though the 68000 lacked the ability to recover from bus faults, allowing a better path to UNIX with the 68010, OEM’s still brought their own MMU technology to flesh it out, leading to divergent systems. Not that it mattered all that much for AT&T as they started to establish themselves as the new defacto go to UNIX vendor they quickly abandoned the market leaving the Unix PC, and 3B2’s to die off. While so many like to think that the ‘Unix’ business is booming, it really only boomed once AT&T exited the market until Linux had started to gain enough mindshare post 1.0… Which also included 68000 support, although aimed for the the stronger 68030/68040’s.

Anyways I’m sure you didn’t come here for my ramblings about the 68000 instead you want an easy to run package to click and GO!

So here, you are, freebee based on build d3c9486 of freebee.

There are two executables, for normies, tourists, and people only wanting to witness the fun it doesn’t matter which one you use. For anyone wanting to install the 3B1 Unix, you’ll want “freebee-10sec-O2.exe”. Since the 3B1 uses a non standard format, if you want to use FAT 360kb disks from a PC emulator then you’ll need “freebee-9sec-O2.exe”. Isn’t compatibility great?

Re-visiting the SUN-2 emulator: Adding SLiRP!

While I’ve covered Brad Parker (lisper)’s ‘emulator-sun-2before, booting into SunOS isn’t anything that new.

However, with the latest updates, from github, adding in a prior botched attempt, and some messing around, and finally, I got it to ping at first, then it was a matter of where to place the ‘slirp tick’. I first though putting it on the interface poll was a good spot, but for some reason the machine causes a deadlock/stall on boot before the PROM can even initialize. I’m not sure why. Searching further I found a good timer portion and injected the code. And sure enough I was greeted with the login banner:

I’ve been able to paste in about 100kb of a uuencoded tar file, and it didn’t lock the VM, and I was able to uudecode it, and actually build the source (Infotaskforce ’87 if anyone cares). So I’m at the point I think it’s stable enough to shove into the world, although I guess until I revisit it again.

You can download it on sourceforge: sun2.zip

Philip Pemberton’s 3B1 emulator moved

It’s been a while since I played with Philip Pemberton’s excellent emulator, however the source code has been moved to github

As a nice bonus it’s been updated to build against the newer source drops of Karl Stenerud’s Musashi.

The Makefile is so nice it chains in c files from sub-directories to build, which unfortunately it doesn’t work so well with the latest Musashi. Like a bull charging into the China shop I just smashed together a build script, and got a working exe:

And it’s so nice to see it actually boot up.

Things like the C compiler still break, apparently the 6100 had an actual physical memory buffer for IPC? It’s all so confusing.

Not that mine is all that great but my crap fork is here:

freebee-master_17032020.zip

emulator-sun-2

Since I was playing with the 68000 based GCC ’87 I know it was going to be more geared to SUN workstations, certainly of the early 80’s vintage as they would be the most ‘affordable/cheap/donated’ to FSF (Or so I’d imagine).

Naturally the go to emulator is TME, however this time while searching around for the install scripts and stuff I found lisper‘s (heeltoe.com) emulator-sun-2, a greatly cut down and SUN-2 focused emulator that emphasizes ease of use.

Wait, what? SUN-2, and ease of use? Why yes, not only that, as it uses SDL 1.2 it also means it’s much easier to compile. After an hour of messing around with it, I had it running on Windows. After a few minutes I had it running on my ARM based Acer NovaGO.

At it’s core is the m68k 68010 emulation from Karl Stenerud‘s Musashi core which is a great choice for the SUN-2 as it’s a 68010 based machine. Some fun notes from web.cuzuco.com/~cuzuco/sun2/ include:

  • CPU is a Motorola 68010 running at 10MHz
  • Maximum physical memory is 4 Megabytes
  • Maximum virtual memory is 16 Megabytes
  • All I/O is via a Multibus (an Intel design)
  • Main disk is a SMD, the largest size is 380Mbyte
  • Has a SCSI adapter, but the disk is slow and small (42Mbyte)
  • Sun was just finishing NFS
  • alludes to future AT&T UNIX System VI and VII
  • Display supported dual heads and a resolution of 1152×900
  • List price as tested: $44,900
  • Sun was still private, had 400 employees and sold 1500 units

You can read about the debut of the SUN-2 in the UNIX/WORLD Magazine, VOlume 1, Number 5 dated October 1984 in archive.org. It starts on page 86.

I started to integrate sigurbjornl’s patches for networking but I think I need to work through SunOS 2.0’s weird VAX 4.2BSD arp issues (anyone have the source code to SunOS 2.0?!). I’ll probably update it with UDP or some fixed ARP thing to remove that or just let the SUN-2 talk to a VAX with 4.2BSD so they can be weird, together.

I’m also pretty sure my old Cockatrice III sort of debugged SLiRP thing broke the packed structs to let it work properly when compiled with Microsoft C, so I’ll have to break down and either try to fix that, or update and borrow the vastly updated SLiRP from SIMH.

For Windows users who want to play along the bundle is on the terribly named page “Ancient UNIX/BSD emulation on Windows” as SUN2.zip.

GCC from ’87 on the 68000

Years ago I found the ‘first’ released version of GCC, and had built it for the VAX. And things were… fun.

While digging around on bitsavers for new and interesting things, I saw some newer stuff from MIT, and stumbled into the GNU directory and rediscovered the early GNU software depot.

And I re-built the early GCC to target the 68000 which I’d imagine primarily was for the SUN target.

simple program

Using a simple program I can run it through the pre-processor, and the compiler to get the following assembly:

assembly from ’87 GCC

Then it’s a matter of running it through the cross assembler, uuencoding it, and sending it to the target.

I used the cross assembler from the AtariST cross ‘project’, to get an object file. I fired up MachTen, pasted my object file to the VM, and uudecoded the object.

And yeah, much to my surprise the object file linked fine, and I got my native EXE.

It’s not much of a cross toolkit, and honestly it’s kind of useless… but I thought it was maybe worth a bare paragraph to show the other available target available for the 1987 release of GCC.

Also on the MIT archive is TRIX, the MIT Unix work alike that almost became the GNU Kernel, until Mach stole their hearts, and basically lead them on a wild goosechase.

I haven’t bothered uploading binaries or patches or anything yet, I don’t know if people are interesting in such a fringe thing……

I think I’m chasing a struct packing issue

i386 breaking on the AASTINKY texture

On the i386 a texture info lump loads up just fine. However on a big endian G5…

OS X 10.2.8 on the G5 on the same AASTINKY

…It clearly has problems. Although notice that the positions and sizes are the same, as they ought to be.

Notice how originx is 24, which should be the width. This code was running with GCC 1.30/1.40 hammered x68000 GCC. Although I have been unable to get the much vaulted gcc-1.30.atari.tar.bz2 to do anything useful, well until tonight, when I found this file: GNU_HEAD.ARC.

That’s right, it’s the gcc-1.23 release headers for GCC on the Atari ST. Now I know other places people have been saying I should use MINT or some GCC8 port. And I wanted something to run on bare TOS, and I cross compiled the simple Infocom interpreter but it just crashes out after a few commands. It’s hardly stable.

3 bombs and an exit under GCC 8.0

Which is just a damned shame, as it was easier to just download someone else’s work.

Anyways, I now can build the old gcc-1.30 libc however… the linker that I’m using that works for GCC 2 links away and it looks like a working program but it doesn’t do anything. I have a feeling the linker drifted in those years between GCC-1.30 and GCC-2.something when it was adapted. Certainly by the time of 2.5.8. So yet more endian ghosts to chase down if I try to adapt that linker.

Cross compiling to the Atari ST

This was a lot harder than it should have been. And not because of gcc or surprisingly ancient binutils.

I didn’t have much to go on, as ancient threads like this, or this end up unanswered or without any good conclusion. I guess it’s not surprising that all the attention is to MiNT & MINIX rather than the native platform. But I was not deterred.

The reason why this was so freaking hard was how so much of key parts of gcc for the ST have been purged and what remains being scattered to the winds. Amazingly the hardest thing to source is the include files. There is a GCC 1.30 file on all the usual GNU mirrors but to save a few kb it has no headers, instead it wants you to reuse the ones from the 1.25 binary distribution. Which is gone. There survives a pl95 binary and source package, but again no includes. Instead I got lucky with all three for pl98. Which has a lot of GCC2 hooks so I cheated on getting the 1.30 hello world by using the 2.5.8 pre-processor.

It’s kind of annoying how all these seemingly tiny files get purged to save a few kb. Just as I can’t for the life of me find the old original GNU libc.

Speaking of files, ZOO has to be the worst compressor ever. Not only is it just overall worse than ZIP, but there are 2 incompatible compression methods, like the introduction of LZD, which any of the good versions of UNZOO can’t deal with. And sure there is zoo210.tar.Z but despite being able to build it on multiple platforms it never does anything useful. All these ancient fileformats sure don’t help anything. And sure there is a MS-DOS version that the MS-DOS Player can run, but get ready for 8.3 filename renaming.

The one good thing that came out of this experience is that since I am building form i386 to 68000 I found that this setup uses the G++ linker which has endian swapping. So maybe I can complete the chain for Mint and MachTen.

I even got the 1987 Infocom interpreter running. Although I don’t know what the deal is, it seems the larger the GCC based program is the higher chance it’ll just crash on exit or force the next program to crash. Building anything native under emulation was an impossibility.

In the same effort, I’ve had the same luck with sozobon. It took way too long to find a working dlibs. I don’t know why people couldn’t either package them together or at least in the same directory. It took far longer just to find the libs… But it was still fun to get that one running as well.

It’s a far more manual process to compile as I have to invoke each stage manually, but at least I’m finally able to get things going.

One of the bigger issues is that I would always find libraries in this olb file format, that the linker from Sozobon wouldn’t recognize. And almost every attempt of trying to build the G++ linker would also fail on. It wasn’t until I was able to get the pl98 include files that I could finally get a linker to actually recognize this … seemingly different for no apparent reason format to actually link. After then I managed to finally find a build of this dlibs that would actually link with Sozobon, which naturally didn’t use olb at all.

So yeah that was an adventure.

I haven’t cleaned it up at all, and really wouldn’t expect anyone else to care, but all my mashed together work (source & binaries!) is here: MinGW-AtariTOS.7z

UPDATE

I started browsing more cd.textfiles.com and amazingly found a ‘home made CD-ROM set’ of Atari software, and buried in the gigabytes of stuff was 4 of the 5 disks of the original GCC-1.23! Namely the source & includes to the first GCC library. I didn’t think this article was going to get any traction, let alone downloads. So many people downloaded the above download.

Anyways I started to put together a better package on sourceforge since it’ll do the multiple GIT’s and nicer downloads.

Download crossAtariST

The default download set is for GCC-1.30, with the headers & lib, along with source. It’s crazy small which just goes for how this old stuff is, and how impact full for losing a few kb.

Also the shell that you use apparently makes a BIG difference. The shell that I was using EmuCON doesn’t show any output from the GCC 1.x libs. However other shells most certainly do. I’ll have to do another update regarding shells/emulation.

Found more system16 source

It gets a little confusing as they are all version 0.82 the real way to tell them apart is the date

What is cool about these versions is that they do have some audio capabilities, although they are so old that they do rely on sampled sounds for:

  • Alien Syndrome
  • Altered Beast
  • Golden Axe
  • Shadow Dancer
  • Shinobi
  • Wrestle War

But it’s from 1999 and that was the state of emulation.

0.82 is basically where the project had left off, and was of course supplanted by MAME. There was preliminary work on AfterBurner 2, although there is from the looks of it a bad/partial ROM dump to blame for the most part. It’s unplayable but it sort of runs the demo.

0.82 does however emulate a strange version of OutRun. Namely that it lacks shifter support all together. So hold down the accelerator and take off!

Notable things is the inclusion of Neill Corlett’s Starscream for 68000 emulation, Neil Bradley’s Mz80, Jarek Burczynski’s YM2151. Which reflects many components of the era that would find their way into MAME.

Which of course speaks to another thing, that tracking down ROMs for these ancient pre-mame emulators is getting impossible with vague names, and no timestamps.

Btw, there is two excellent pages where you can get all the roms supported
by this emulator, these pages are :
http://www.davesclassics.com by Conjurer
and
http://www.emuviews.com by JoseQ

Which naturally, are lost to the mists of time.

I’ve been able to run it under DOSBox, Qemu and VMWare. For VMWare, be sure to enable Sound Blaster emulation, and set the BLASTER environment variable to:

SET BLASTER=A220 I5 D1 H7 P330 T6

The video mode for the start screen doesn’t render on VMWare or Qemu, so in that case I just start it with the following batch file

system16 %1.gcs -notitle -old2151 -noarcade %2 %3 %4 %5 %6

And away it goes!

I don’t have the FPS stats as it’ll crash when going to the menu to exit, and I didn’t hack up the source that much at the moment (caught another flu…). But Qemu 0.90 feels a LOT more fluid playing outrun than VMWare or DOSBox on my 2006 Mac Pro. Although on my 32 core Xeon monster it plays great on everything. I guess if you have at least 3Ghz and your CPU is less than 8 years old it’ll be fine for running nested emulation along with emulating 2 68000’s a z80, and a ym2151. Or just run a native build of MAME! Or if you really want low lag Outrun, use Cannonball!

And thanks again to Thierry Lescot for letting me redistribute this